# ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4 32b MCU+FPU, 64KB Flash, 16KB SRAM, 2 ADCs, 3 DAC channels, 3 COMPs, Op-Amp, 1.8 V 

Datasheet-production data

## Features

- Core: ARM ${ }^{\circledR}$-32-bit Cortex ${ }^{\circledR}$-M4 CPU with FPU ( 72 MHz max), single-cycle multiplication and HW division, and DSP instruction
- Memories
- Up to 64 KB of Flash memory
- 12 KB of SRAM with HW parity check
- Routine booster: 4 KB of SRAM on instruction and data bus with HW parity check (CCM)
- CRC calculation unit
- Reset and supply management
- $V_{D D}: 1.8 \mathrm{~V}+/-8 \%$
- $\mathrm{V}_{\mathrm{DDA}}$ : voltage range: 1.65 to 3.6 V
- Low-power modes: Sleep, Stop
- $V_{\text {BAT }}$ supply for RTC and backup registers
- Clock management
- 4 to 32 MHz crystal oscillator
- 32 kHz oscillator for RTC with calibration
- Internal 8 MHz RC (up to 64 MHz with PLL option)
- Internal 40 kHz oscillator
- Up to 36 fast I/O ports, all mappable on external interrupt vectors, several 5 V-tolerant
- Interconnect Matrix
- 7-channel DMA controller
- Up to two ADC $0.20 \mu \mathrm{~s}$ (up to 14 channels) with selectable resolution of $12 / 10 / 8 / 6$ bits, 0 to 3.6 V conversion range, singleended/differential mode, separate analog supply from 1.8 to 3.6 V
- Temperature sensor
- Up to three 12-bit DAC channels with analog supply from 2.4 V to 3.6 V
- Three ultra-fast rail-to-rail analog comparators with analog supply from 1.8 V to 3.6 V

- One operational amplifiers that can be used in PGA mode, all terminals accessible with analog supply from 2.4 to 3.6 V
- Up to 17 capacitive sensing channels supporting touchkeys, linear and rotary touch sensors
- Up to 11 timers
- One 32-bit timer and one 16-bit timer with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input
- One 16-bit 6-channel advanced-control timer, with up to 6 PWM channels, deadtime generation and emergency stop
- One 16-bit timer with 2 IC/OCs, 1 OCN/PWM, deadtime generation, emergency stop
- Two 16-bit timers with IC/OC/OCN/PWM, deadtime generation and emergency stop
- Two watchdog timers (independent, window)
- SysTick timer: 24-bit downcounter
- Up to two 16-bit basic timers to drive the DAC
- Calendar RTC with alarm, periodic wakeup from Stop
- Communication interfaces
- CAN interface (2.0 B Active)
- One $\mathrm{I}^{2} \mathrm{C}$ with 20 mA current sink to support Fast mode plus, SMBus/PMBus
- Up to 3 USARTs, one with ISO/IEC 7816 interface, LIN, IrDA, modem control
- One SPI
- Debug mode: serial wire debug (SWD), JTAG
- 96-bit unique ID
- All packages ECOPACK ${ }^{\circledR} 2$


## Contents

1 Introduction ..... 8
2 Description ..... 9
3 Functional overview ..... 12
$3.1 \quad \mathrm{ARM}^{\circledR}{ }^{\circledR}$ Cortex ${ }^{\circledR}-\mathrm{M} 4$ core with FPU with embedded Flash and SRAM ..... 12
3.2 Memories ..... 12
3.2.1 Embedded Flash memory ..... 12
3.2.2 Embedded SRAM ..... 12
3.2.3 Boot modes ..... 13
3.3 Cyclic redundancy check calculation unit (CRC) ..... 13
3.4 Power management ..... 13
3.4.1 Power supply schemes ..... 13
3.4.2 Power supply supervision ..... 13
3.4. Low-power modes ..... 14
3.5 Interconnect matrix ..... 14
3.6 Clocks and startup ..... 15
3.7 General-purpose inputs/outputs (GPIOs) ..... 16
3.8 Direct memory access (DMA) ..... 17
3.9 Interrupts and events ..... 17
3.9.1 Nested vectored interrupt controller (NVIC) ..... 17
3.9.2 Extended interrupt/event controller (EXTI) ..... 17
3.10 Fast analog-to-digital converter (ADC) ..... 18
3.10.1 Temperature sensor ..... 18
3.10.2 Internal voltage reference (VREFINT) ..... 18
3.10.3 $\quad \mathrm{V}_{\text {BAT }}$ battery voltage monitoring ..... 19
3.10.4 OPAMP2 reference voltage (VOPAMP2) ..... 19
3.11 Digital-to-analog converter (DAC) ..... 19
3.12 Operational amplifier (OPAMP) ..... 19
3.13 Ultra-fast comparators (COMP) ..... 20
3.14 Timers and watchdogs ..... 20
3.14.1 Advanced timer (TIM1) ..... 21
3.14.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16, TIM17) ..... 21
3.14.3 Basic timers (TIM6 and TIM7) ..... 21
3.14.4 Independent watchdog ..... 22
3.14.5 Window watchdog ..... 22
3.14.6 SysTick timer ..... 22
3.15 Real-time clock (RTC) and backup registers ..... 22
3.16 Communication interfaces ..... 23
3.16.1 Inter-integrated circuit interface ( $\left.I^{2} \mathrm{C}\right)$ ..... 23
3.16.2 Universal synchronous/asynchronous receiver transmitters (USARTs) ..... 24
3.16.3 Serial peripheral interface (SPI) ..... 25
3.16.4 Controller area network (CAN) ..... 25
3.17 Infrared transmitter ..... 25
3.18 Touch sensing controller (TSC) ..... 26
3.19 Development support ..... 27
3.19.1 Serial wire JTAG debug port (SWJ-DP) ..... 27
4 Pinouts and pin description ..... 28
5 Memory mapping ..... 40
6 Electrical characteristics ..... 43
6.1 Parameter conditions ..... 43
6.1.1 Minimum and maximum values ..... 43
6.1.2 Typical values ..... 43
6.1.3 Typical curves ..... 43
6.1.4 Loading capacitor ..... 43
6.1.5 Pin input voltage ..... 43
6.1.6 Power supply scheme ..... 44
6.1.7 Current consumption measurement ..... 45
6.2 Absolute maximum ratings ..... 46
6.3 Operating conditions ..... 48
6.3.1 General operating conditions ..... 48
6.3.2 Operating conditions at power-up / power-down ..... 49
6.3.3 Embedded reference voltage ..... 50
6.3.4 Supply current characteristics ..... 50
6.3.5 Wakeup time from low-power mode ..... 63
6.3.6 External clock source characteristics ..... 63
6.3.7 Internal clock source characteristics ..... 68
6.3.8 PLL characteristics ..... 69
6.3.9 Memory characteristics ..... 70
6.3.10 EMC characteristics ..... 71
6.3.11 Electrical sensitivity characteristics ..... 72
6.3.12 I/O current injection characteristics ..... 73
6.3.13 I/O port characteristics ..... 74
6.3.14 NRST pin characteristics ..... 78
6.3.15 NPOR pin characteristics ..... 79
6.3.16 Timer characteristics ..... 80
6.3.17 Communications interfaces ..... 82
6.3.18 ADC characteristics ..... 85
6.3.19 DAC electrical specifications ..... 94
6.3.20 Comparator characteristics ..... 96
6.3.21 Operational amplifier characteristics ..... 97
6.3.22 Temperature sensor (TS) characteristics ..... 100
7 Package characteristics ..... 101
7.1 Package mechanical data ..... 101
7.2 Thermal characteristics ..... 105
7.2.1 Reference document ..... 105
7.2.2 Selecting the product temperature range ..... 106
8 Part numbering ..... 107
9 Revision history ..... 108

## List of tables

Table 1. STM32F328C8 family device features and peripherals count ..... 10
Table 2. $V_{D D A}$ ranges for analog peripherals ..... 13
Table 3. STM32F328C8 Peripheral interconnect matrix ..... 14
Table 4. Timer feature comparison. ..... 20
Table 5. Comparison of I2C analog and digital filters ..... 23
Table 6. STM32F328C8 $I^{2} \mathrm{C}$ implementation ..... 24
Table 7. USART features ..... 24
Table 8. STM32F328C8 SPI implementation ..... 25
Table 9. Capacitive sensing GPIOs available on STM32F328C8 devices ..... 26
Table 10. No. of capacitive sensing channels available on STM32F328C8 devices ..... 27
Table 11. Legend/abbreviations used in the pinout table ..... 29
Table 12. STM32F328C8 pin definitions ..... 29
Table 13. Alternate functions ..... 36
Table 14. STM32F328C8 peripheral register boundary addresses ..... 41
Table 15. Voltage characteristics ..... 46
Table 16. Current characteristics ..... 47
Table 17. Thermal characteristics ..... 47
Table 18. General operating conditions ..... 48
Table 19. Operating conditions at power-up / power-down ..... 49
Table 20. Embedded internal reference voltage ..... 50
Table 21. Internal reference voltage calibration values ..... 50
Table 22. Typical and maximum current consumption from $\mathrm{V}_{\mathrm{DD}}$ supply at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ ..... 52
Table 23. Typical and maximum current consumption from the $V_{\text {DDA }}$ supply ..... 54
Table 24. Typical and maximum $V_{D D}$ consumption in Stop mode ..... 54
Table 25. Typical and maximum $\mathrm{V}_{\mathrm{DDA}}$ consumption in Stop mode ..... 54
Table 26. Typical and maximum current consumption from $\mathrm{V}_{\mathrm{BAT}}$ supply. ..... 55
Table 27. Typical current consumption in Run mode, code with data processing running from Flash 57
Table 28. Typical current consumption in Sleep mode, code running from Flash or RAM ..... 58
Table 29. Switching output I/O current consumption ..... 60
Table 30. Peripheral current consumption ..... 61
Table 31. Low-power mode wakeup timings ..... 63
Table 32. High-speed external user clock characteristics. ..... 63
Table 33. Low-speed external user clock characteristics ..... 64
Table 34. HSE oscillator characteristics ..... 65
Table 35. LSE oscillator characteristics ( $\mathrm{f}_{\mathrm{LSE}}=32.768 \mathrm{kHz}$ ) ..... 67
Table 36. HSI oscillator characteristics ..... 68
Table 37. LSI oscillator characteristics ..... 69
Table 38. PLL characteristics ..... 69
Table 39. Flash memory characteristics ..... 70
Table 40. Flash memory endurance and data retention ..... 70
Table 41. EMS characteristics ..... 71
Table 42. EMI characteristics ..... 72
Table 43. ESD absolute maximum ratings ..... 72
Table 44. Electrical sensitivities ..... 73
Table 45. I/O current injection susceptibility ..... 73
Table 46. I/O static characteristics ..... 74
Table 47. Output voltage characteristics ..... 76
Table 48. I/O AC characteristics . ..... 77
Table 49. NRST pin characteristics ..... 78
Table 50. NPOR pin characteristics ..... 79
Table 51. TIMx characteristics ..... 80
Table 52. IWDG min./max. timeout period at 40 kHz (LSI) ..... 81
Table 53. WWDG min./max. timeout value at 72 MHz (PCLK). ..... 81
Table 54. I2C analog filter characteristics ..... 82
Table 55. SPI characteristics ..... 83
Table 56. ADC characteristics ..... 85
Table 57. Maximum ADC RAIN ..... 88
Table 58. ADC accuracy - limited test conditions ..... 89
Table 59. ADC accuracy ..... 91
Table 60. ADC accuracy at 1MSPS ..... 92
Table 61. DAC characteristics ..... 94
Table 62. Comparator characteristics ..... 96
Table 63. Operational amplifier characteristics ..... 97
Table 64. Temperature sensor (TS) characteristics ..... 100
Table 65. Temperature sensor (TS) calibration values. ..... 100
Table 66. LQFP48-7x7mm, 48-pin low-profile quad flat package mechanical data ..... 102
Table 67. Package thermal characteristics ..... 105
Table 68. Ordering information scheme ..... 107
Table 69. Document revision history ..... 108

## List of figures

Figure 1. STM32F328C8 block diagram ..... 11
Figure 2. Clock tree ..... 16
Figure 3. Infrared transmitter ..... 26
Figure 4. LQFP48 pinout ..... 28
Figure 5. STM32F328C8 memory map ..... 40
Figure 6. Pin loading conditions ..... 43
Figure 7. Pin input voltage ..... 43
Figure 8. Power supply scheme. ..... 44
Figure 9. Current consumption measurement scheme ..... 45
Figure 10. Typical $\mathrm{V}_{\mathrm{BAT}}$ current consumption (LSE and RTC ON/LSEDRV[1:0] = '00') ..... 55
Figure 11. High-speed external clock source AC timing diagram ..... 64
Figure 12. Low-speed external clock source AC timing diagram ..... 64
Figure 13. Typical application with an 8 MHz crystal ..... 66
Figure 14. Typical application with a 32.768 kHz crystal ..... 68
Figure 15. HSI oscillator accuracy characterization results for soldered parts ..... 69
Figure 16. TC and TTa I/O input characteristics - CMOS port ..... 75
Figure 17. TC and TTa I/O input characteristics - TTL port . ..... 76
Figure 18. I/O AC characteristics definition ..... 78
Figure 19. Recommended NRST pin protection ..... 79
Figure 20. SPI timing diagram - slave mode and CPHA $=0$ ..... 84
Figure 21. SPI timing diagram - slave mode and CPHA $=1^{(1)}$ ..... 84
Figure 22. SPI timing diagram - master mode ${ }^{(1)}$ ..... 85
Figure 23. ADC typical current consumption in single-ended and differential modes ..... 87
Figure 24. ADC accuracy characteristics ..... 93
Figure 25. Typical connection diagram using the ADC ..... 93
Figure 26. 12-bit buffered /non-buffered DAC ..... 95
Figure 27. Maximum $V_{\text {REFINT }}$ scaler startup time from power down ..... 96
Figure 28. OPAMP Voltage Noise versus Frequency ..... 99
Figure 29. LQFP48-7x7mm, 48-pin low-profile quad flat package outline ..... 102
Figure 30. LQFP48 recommended footprint ..... 103
Figure 31. LQFP48 marking example (package top view) ..... 104

## 1 <br> Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F328C8 microcontrollers.

This STM32F328C8 datasheet should be read in conjunction with the STM32F303xx, STM32F358xx and STM32F328xx advanced ARM-based 32-bit MCUs reference manual (RM00316) available from the STMicroelectronics website www.st.com.
For information on the Cortex ${ }^{\circledR}$-M4 core with FPU, please refer to:

- $\quad$ ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4 Processor Technical Reference Manual available from the www.arm.com website.
- STM32F3xxx and STM32F4xxx Cortex ${ }^{\circledR}-M 4$ programming manual (PM0214) available from the www.st.com website.


## 2 Description

The STM32F328C8 family is based on the high-performance ARM ${ }^{\circledR} 32$-bit Cortex ${ }^{\circledR}$-M4 RISC core operating at a frequency of up to 72 MHz , and embedding a floating point unit (FPU). The STM32F328C8 family incorporates high-speed embedded memories (up to 64 Kbytes of Flash memory, 12 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The STM32F328C8 devices offer up to two fast 12-bit ADCs (5 Msps), up to three ultra-fast comparators, an operational amplifier, three DAC channels, a low-power RTC, one generalpurpose 32-bit timer, one timer dedicated to motor control, and four general-purpose 16-bit timers. They also feature standard and advanced communication interfaces: one $I^{2} C$, one SPI, up to three USARTs and one CAN.

The STM32F328C8 family operates in the -40 to $+85^{\circ} \mathrm{C}$ and -40 to $+105^{\circ} \mathrm{C}$ temperature ranges from $1.8 \mathrm{~V}+/-8 \%$ power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F328C8 family offers devices in 48-pin packages.

Table 1. STM32F328C8 family device features and peripherals count

| Peripheral |  | STM32F328C8 |
| :---: | :---: | :---: |
| Flash (Kbytes) |  | 64 |
| SRAM on data bus (Kbytes) |  | 12 |
| Core coupled memory SRAM on instruction bus (CCM SRAM) (Kbytes) |  | 4 |
| Timers | Advanced control | 1 (16-bit) |
|  | General purpose | $\begin{aligned} & 4 \text { (16-bit) } \\ & 1 \text { (32 bit) } \end{aligned}$ |
|  | Basic | 2 (16-bit) |
|  | SysTick timer | 1 |
|  | Watchdog timers (independent, window) | 2 |
|  | PWM channels (all) ${ }^{(1)}$ | 22 |
|  | PWM channels (except complementary) | 16 |
| Comm. interfaces | SPI | 1 |
|  | ${ }^{2} \mathrm{C}$ | 1 |
|  | USART | 3 |
|  | CAN | 1 |
| GPIOs | Normal I/Os (TC, TTa) | 19 |
|  | 5-Volt tolerant I/Os (FT,FTf) | 17 |
| Capacitive sensing channels |  | 17 |
| DMA channels |  | 7 |
| 12-bit ADCs <br> Number of channels |  | $\begin{gathered} 2 \\ 14 \end{gathered}$ |
| 12-bit DAC channels |  | 3 |
| Ultra-fast analog comparator |  | 3 |
| Operational amplifiers |  | 1 |
| CPU frequency |  | 72 MHz |
| Operating voltage |  | $\begin{aligned} \mathrm{V}_{\mathrm{DD}} & =1.8 \mathrm{~V}+/-8 \% \\ \mathrm{~V}_{\mathrm{DDA}} & =1.65 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$ |
| Operating temperature |  | Ambient operating temperature: - 40 to $85^{\circ} \mathrm{C} /-40$ to $105^{\circ} \mathrm{C}$ <br> Junction temperature: - 40 to $125^{\circ} \mathrm{C}$ |
| Packages |  | LQFP48 |

1. This total considers also the PWMs generated on the complementary output channels.

Figure 1. STM32F328C8 block diagram


1. AF : alternate function on $\mathrm{I} / \mathrm{O}$ pins.

## 3 Functional overview

### 3.1 ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$-M4 core with FPU with embedded Flash and SRAM

The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM 32-bit Cortex-M4 RISC processor with FPU features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8 - and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F328C8 family is compatible with all ARM tools and software.

Figure 1 shows the general block diagrams of the STM32F328C8 family devices.

### 3.2 Memories

### 3.2.1 Embedded Flash memory

All STM32F328C8 devices feature up to 64 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency ( 0 wait state from 0 to 24 MHz , 1 wait state from 24 to 48 MHz and 2 wait states above).

### 3.2.2 Embedded SRAM

The STM32F328C8 devices feature 12 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz when running code from CCM (core coupled memory) RAM.

The SRAM is organized as follows:

- 4 Kbytes of SRAM on instruction and data bus with parity check (core coupled memory or CCM) and used to execute critical routines or to access data
- 12 Kbytes of SRAM with parity check mapped on the data bus.


### 3.2.3 Boot modes

At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PA2/PA3), I2C1 (PB6/PB7).

### 3.3 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

### 3.4 Power management

### 3.4.1 Power supply schemes

- $\quad \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}+/-8 \%$ : external power supply for I/Os and core. It is provided externally through VDD pins.
- $\quad \mathrm{V}_{\mathrm{SSA}}, \mathrm{V}_{\mathrm{DDA}}=1.65$ to 3.6 V : external analog power supply for ADC, DACs, comparators operational amplifiers, reset blocks, RCs and PLL. The minimum voltage to be applied to $V_{\text {DDA }}$ differs from one analog peripherals to another. See the table below, summarizing the $\mathrm{V}_{\text {DDA }}$ ranges for analog peripherals. The $\mathrm{V}_{\text {DDA }}$ voltage level must be always greater or equal to the $\mathrm{V}_{\mathrm{DD}}$ voltage level and must be provided first.

Table 2. $\mathrm{V}_{\mathrm{DDA}}$ ranges for analog peripherals

| Analog peripheral | Min $\mathbf{V}_{\text {DDA }}$ supply | Max V $_{\text {DDA }}$ supply |
| :--- | :---: | :---: |
| ADC/COMP | 1.8 V | 3.6 V |
| DAC/OPAMP | 2.4 V | 3.6 V |

- VBAT= 1.65 to 3.6 V : power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch which is guaranteed in the full range of VDD) when VDD is not present.


### 3.4.2 Power supply supervision

The device power on reset is controlled through the external NPOR pin. The device remains in reset state when NPOR pin is held low.To guarantee a proper power-on reset, the NPOR
pin must be held low when VDDA is applied. Then, when VDD is stable, the reset state can be exited by:

- either putting the NPOR pin in high impedance. NPOR pin has an internal pull up
- or forcing the pin to high level by connecting it to VDDA.


### 3.4.3 Low-power modes

The STM32F328C8 supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

- Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx, I2C or USARTx.

Note: $\quad$ The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop mode.

### 3.5 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Table 3. STM32F328C8 Peripheral interconnect matrix

| Interconnect source | Interconnect <br> destination | Interconnect action |
| :--- | :--- | :--- |
|  | TIMx | Timers synchronization or chaining |
|  | ADCx <br> DACx | Conversion triggers |
|  | DMA | Memory to memory transfer trigger |
|  | COMPx | Comparator output blanking |
| COMPx | TIMx | Timer input: ocrefclear input, input capture |
| ADCx | TIM1 | Clock source used as input channel for HSI and <br> LSI calibration |
| GPIO <br> RTCCLK <br> HSE/32 <br> MC0 | TIM16 |  |

Table 3. STM32F328C8 Peripheral interconnect matrix (continued)

| Interconnect source | Interconnect <br> destination | Interconnect action |
| :--- | :--- | :--- |
| CSS <br> CPU (hard fault) <br> RAM (parity error) <br> COMPx <br> PVD <br> GPIO | TIM1 |  |
| GPIO | Timer break |  |
|  | TIMx |  |
|  | ADCx |  |
| DACx | COMPx | Conversion external trigger |

Note: For more details about the interconnect actions, please refer to the corresponding sections in the RM0316 reference manual.

### 3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external $4-32 \mathrm{MHz}$ clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz , while the maximum allowed frequency of the low speed APB domain is 36 MHz .

TIM1 maximum frequency is 144 MHz .

Figure 2. Clock tree


### 3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the

GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allows I/O toggling up to 36 MHz .

### 3.8 Direct memory access (DMA)

The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer.

Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, $I^{2} C$, USART, general-purpose timers, DAC and ADC.

### 3.9 Interrupts and events

### 3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F328C8 devices embed a nested vectored interrupt controller (NVIC) able to handle up to 60 interrupt channels, that can be masked and 16 priority levels.

The NVIC benefits are the following:

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

### 3.9.2 Extended interrupt/event controller (EXTI)

The external interrupt/event controller consists of 27 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 37 GPIOs can be connected to the 16 external interrupt lines.

### 3.10 Fast analog-to-digital converter (ADC)

Two 5 MSPS fast analog-to-digital converters, with selectable resolution between 12 and 6 bit, are embedded in the STM32F328C8 family devices. The ADCs have up to 14 external channels. Some of the external channels are shared between ADC1 and ADC2, performing conversions in single-shot or scan modes. The channels can be configured to be either single-ended input or differential input. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADCs also have internal channels: temperature sensor connected to ADC1 channel 16, $\mathrm{V}_{\mathrm{BAT}} / 2$ connected to ADC1 channel 17, voltage reference $\mathrm{V}_{\text {REFINT }}$ connected to both ADC1 and ADC2 channel 18 and VOPAMP2 connected to ADC2 channel 17.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single-shunt phase current reading techniques.

Three analog watchdogs are available per ADC. The ADC can be served by the DMA controller.

The analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIM2, TIM3, TIM6, TIM15) can be internally connected to the ADC start trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

### 3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathrm{V}_{\text {SENSE }}$ that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

### 3.10.2 Internal voltage reference (VREFINT)

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC1_IN18 and ADC2_IN18 input channels. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

### 3.10.3 $\quad \mathrm{V}_{\text {BAT }}$ battery voltage monitoring

This embedded hardware feature allows the application to measure the $\mathrm{V}_{\mathrm{BAT}}$ battery voltage using the internal ADC channel ADC1_IN17. As the $\mathrm{V}_{\text {BAT }}$ voltage may be higher than $\mathrm{V}_{\mathrm{DDA}}$, and thus outside the ADC input range, the $V_{\text {BAT }}$ pin is internally connected to a bridge divider by 2 . As a consequence, the converted digital value is half the $\mathrm{V}_{\text {BAT }}$ voltage.

### 3.10.4 OPAMP2 reference voltage (VOPAMP2)

OPAMP2 reference voltage can be measured using ADC2 internal channel 17.

### 3.11 Digital-to-analog converter (DAC)

One 12-bit buffered DAC channel (DAC1_OUT1) and two 12-bit unbuffered DAC channels (DAC1_OUT2 and DAC2_OUT1) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital interface supports the following features:

- Three DAC output channels
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation (only on DAC1)
- Triangular-wave generation (only on DAC1)
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion


### 3.12 Operational amplifier (OPAMP)

The STM32F328C8 embeds an operational amplifier (OPAMP2) with external or internal follower routing and PGA capability (or even amplifier and filter capability with external components). When an operational amplifier is selected, an external ADC channel is used to enable output measurement.

The operational amplifier features:

- 8 MHz GBP
- $\quad 0.5 \mathrm{~mA}$ output capability
- Rail-to-rail input/output
- In PGA mode, the gain can be programmed to $2,4,8$ or 16 .


### 3.13 Ultra-fast comparators (COMP)

The STM32F328C8 devices embed three ultra-fast rail-to-rail comparators (COMP2/4/6) which offer the features below:

- Programmable internal or external reference voltage
- Selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output
- Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 20: Embedded internal reference voltage for values and parameters of the internal reference voltage.

All comparators can wake up from STOP mode, generate interrupts and breaks for the timers.

### 3.14 Timers and watchdogs

The STM32F328C8 includes advanced control timer, 5 general-purpose timers, basic timer, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Table 4. Timer feature comparison

| Timer type | Timer | Counter <br> resolution | Counter <br> type | Prescaler <br> factor | DMA <br> request <br> generation | Capture/ <br> compare <br> Channels | Complementar <br> y outputs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Advanced <br> control | TIM1(1) | 16-bit | Up, Down, <br> Up/Down | Any integer <br> between 1 <br> and 65536 | Yes | 4 | Yes |
| General- <br> purpose | TIM2 | 32-bit | Up, Down, <br> Up/Down | Any integer <br> between 1 <br> and 65536 | Yes | 4 | No |
| General- <br> purpose | TIM3 | 16-bit | Up, Down, <br> Up/Down | Any integer <br> between 1 <br> and 65536 | Yes | 4 | No |
| General- <br> purpose | TIM15 | 16-bit | Up | Any integer <br> between 1 <br> and 65536 | Yes | 2 | 1 |
| General- <br> purpose | TIM16, | TIM17 | 16-bit | Up | Any integer <br> between 1 <br> and 65536 | Yes | 1 |

1. TIM1 can be clocked from the PLL running at 144 MHz when the system clock source is the PLL and AHB or APB2 subsystem clocks are not divided by more than 2 cumulatively.

### 3.14.1 Advanced timer (TIM1)

The advanced-control timer can be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100\%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIM timers (described in Section 3.14.2 using the same architecture, so the advanced-control timers can work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

### 3.14.2 General-purpose timers (TIM2, TIM3, TIM15, TIM16, TIM17)

There are up to three general-purpose timers embedded in the STM32F328C8 (see Table 4 for differences), that can be synchronized. Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base.

- TIM2 and TIM3

They are full-featured general-purpose timers:

- TIM2 has a 32-bit auto-reload up/down counter and 32-bit prescaler
- TIM3 has a 16-bit auto-reload up/down counter and 16-bit prescaler.

These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.

- TIM15, 16 and 17

These three timers general-purpose timers with mid-range features:
They have 16 -bit auto-reload upcounters and 16 -bit prescalers.

- TIM15 has 2 channels and 1 complementary channel
- TIM16 and TIM17 have 1 channel and 1 complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.
The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.

### 3.14.3 Basic timers (TIM6 and TIM7)

The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases.

### 3.14.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop mode. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

### 3.14.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

### 3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0 .
- Programmable clock source


### 3.15 Real-time clock (RTC) and backup registers

The RTC and the 5 backup registers are supplied through a switch that takes power from either the $\mathrm{V}_{\mathrm{DD}}$ supply when present or the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when $V_{D D}$ power is not present.

They are not reset by a system or power reset.

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Reference clock detection: a more precise second source clock ( 50 or 60 Hz ) can be used to enhance the calendar precision.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms with wake up from Stop mode capability.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- Two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop mode on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop mode on timestamp event detection.
- 17-bit Auto-reload counter for periodic interrupt with wakeup from STOP capability.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz )
- The high-speed external clock divided by 32.


### 3.16 Communication interfaces

### 3.16.1 Inter-integrated circuit interface ( $I^{2} \mathrm{C}$ )

The devices feature an $I^{2} \mathrm{C}$ bus interface which can operate in multimaster and slave mode. It can support standard (up to 100 kHz ), fast (up to 400 kHz ) and fast mode + (up to 1 MHz ) modes.

It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). It also includes programmable analog and digital noise filters.

Table 5. Comparison of I2C analog and digital filters

|  | Analog filter | Digital filter |
| :--- | :--- | :--- |
| Pulse width of <br> suppressed spikes | $\geq 50 \mathrm{~ns}$ | Programmable length from 1 to 15 <br> I2C peripheral clocks |
| Benefits | Available in Stop mode | 1. Extra filtering capability vs. <br> standard requirements. <br> 2. Stable length |
| Drawbacks | Variations depending on <br> temperature, voltage, process | Wakeup from Stop on address <br> match is not available when digital <br> filter is enabled. |

In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. It also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C interface can be served by the DMA controller.
Refer to Table 6 for the features available in I2C1.
Table 6. STM32F328C8 $\mathrm{I}^{2} \mathrm{C}$ implementation

| I2C features ${ }^{(\mathbf{1})}$ | I2C1 |
| :--- | :---: |
| 7-bit addressing mode | X |
| 10-bit addressing mode | X |
| Standard mode (up to 100 kbit/s) | X |
| Fast mode (up to 400 kbit/s) | X |
| Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) | X |
| Independent clock | X |
| SMBus | X |
| Wakeup from STOP | X |

1. $X=$ supported.

### 3.16.2 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F328C8 devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3).

The USART interfaces are able to communicate at speeds of up to $9 \mathrm{Mbits} / \mathrm{s}$.
USART1 provides hardware management of the CTS and RTS signals. It supports IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and has LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.
Refer to Table 7 for the features available in the USART interfaces.

Table 7. USART features

| USART modes/features ${ }^{(1)}$ | USART1 | USART2 <br> USART3 |
| :--- | :---: | :---: |
| Hardware flow control for modem | X | X |
| Continuous communication using DMA | X | X |
| Multiprocessor communication | X | X |
| Synchronous mode | X | X |
| Smartcard mode | X | X |
| Single-wire half-duplex communication | X |  |

Table 7. USART features (continued)

| USART modes/features ${ }^{(1)}$ | USART1 | USART2 <br> USART3 |
| :--- | :---: | :---: |
| IrDA SIR ENDEC block | X | - |
| LIN mode | X | - |
| Dual clock domain and wakeup from Stop mode | X | - |
| Receiver timeout interrupt | X | C |
| Modbus communication | X | - |
| Auto baud rate detection | X | X |
| Driver Enable | X |  |

1. $X=$ supported.

### 3.16.3 Serial peripheral interface (SPI)

A SPI interface allows to communicate up to $18 \mathrm{Mbits} / \mathrm{s}$ in slave and master modes in fullduplex and simplex communication modes. The 3 -bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

Refer to Table 8 for the features available in SPI1.
Table 8. STM32F328C8 SPI implementation

| SPI features $^{(1)}$ | SPI1 |
| :--- | :---: |
| Hardware CRC calculation | X |
| Rx/Tx FIFO | X |
| NSS pulse mode | X |
| TI mode | X |

1. $\mathrm{X}=$ supported.

### 3.16.4 Controller area network (CAN)

The CAN is compliant with specifications 2.0 A and B (active) with a bit rate up to $1 \mathrm{Mbit} / \mathrm{s}$. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

### 3.17 Infrared transmitter

The STM32F328C8 devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13.

To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels.

Figure 3. Infrared transmitter


### 3.18 Touch sensing controller (TSC)

The STM32F328C8 devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 17 capacitive sensing channels distributed over 6 analog I/Os group.

Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Table 9. Capacitive sensing GPIOs available on STM32F328C8 devices

| Group | Capacitive sensing group name | Pin name |
| :---: | :---: | :---: |
| 1 | TSC_G1_IO1 | PA0 |
|  | TSC_G1_IO2 | PA1 |
|  | TSC_G1_IO3 | PA2 |
|  | TSC_G1_IO4 | PA3 |
| 2.3 | TSC_G2_IO1 | PA4 |
|  | TSC_G2_IO2 | PA5 |
|  | TSC_G2_IO3 | PA6 |
|  | 3 | TSC_G2_IO4 |

Table 9. Capacitive sensing GPIOs available on STM32F328C8 devices (continued)

| Group | Capacitive sensing group name | Pin name |
| :---: | :---: | :---: |
| 4 | TSC_G4_IO1 | PA9 |
|  | TSC_G4_IO2 | PA10 |
|  | TSC_G4_IO3 | PA13 |
|  | 5 | TSC_G4_IO4 |
|  |  | PA14 |
|  |  | PB3 |
|  |  | PB4 |
|  | TSC_G5_IO4 | PB6 |
|  | TSC_G6_IO1 | PB7 |
|  | TSC_G6_IO2 | PB11 |
|  | TSC_G6_IO3 | PB12 |
|  | TSC_G6_IO4 | PB13 |
|  |  | PB14 |

Table 10. No. of capacitive sensing channels available on STM32F328C8 devices

| Analog I/O group | Number of capacitive sensing channels |
| :---: | :---: |
|  | STM32F328C8 |
| G1 | 3 |
| G2 | 3 |
| G3 | 2 |
| G4 | 3 |
| G5 | 3 |
| G6 | 3 |
| Number of capacitive <br> sensing channels | 17 |

### 3.19 Development support

### 3.19.1 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

## 4 Pinouts and pin description

Figure 4. LQFP48 pinout


Table 11. Legend/abbreviations used in the pinout table

| Name |  | Abbreviation | Definition |
| :---: | :---: | :---: | :---: |
| Pin name |  | Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name |  |
| Pin type |  | S Supply pin |  |
|  |  | 1 | Input only pin |
|  |  | I/O | Input / output pin |
| I/O structure |  | FT | 5 V tolerant I/O |
|  |  | FTf | 5 V tolerant I/O, FM + capable |
|  |  | TTa | 3.3 V tolerant I/O directly connected to ADC |
|  |  | TT | 3.3 V tolerant I/O |
|  |  | TC | Standard $3.3 \mathrm{VI} / \mathrm{O}$ |
|  |  | B | Dedicated BOOTO pin |
|  |  | RST | Bi-directional reset pin with embedded weak pull-up resistor |
|  |  | POR | External power-on reset pin with embedded weak pull-up resistor, powered from $V_{\text {DDA }}$. |
| Notes |  | Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset |  |
| Pin functions | Alternate functions | Functions selected through GPIOx_AFR registers |  |
|  | Additional functions | Functions directly selected/enabled through peripheral registers |  |

Table 12. STM32F328C8 pin definitions

| Pin Number |  |  |  | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 | Pin name (function after reset) | $\begin{aligned} & \stackrel{0}{2} \\ & \underset{\sim}{2} \\ & \end{aligned}$ |  | Alternate functions | Additional functions |
| 1 | VBAT | S | - | Backup power supply |  |
| 2 | $\mathrm{PC} 13{ }^{(1)}$ | I/O | TC | TIM1_CH1N | ```RTC_TAMP1/RT C_TS/ RTC_OUT/WKU P2``` |
| 3 | $\begin{gathered} \text { PC14 / } \\ \text { OSC32_IN }{ }^{(1)} \end{gathered}$ | I/O | TC | - | OSC32_IN |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number | Pin name (function after reset) |  |  | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 |  |  |  | Alternate functions | Additional functions |
| 4 | $\begin{gathered} \mathrm{PC} 15 / \\ \text { OSC32_OUT(1) } \end{gathered}$ | I/O | TC | - | OSC32_OUT |
| 5 | PFO / OSC_IN | I/O | FT | TIM1_CH3N | OSC_IN |
| 6 | PF1 / OSC_OUT | I/O | FT | - | OSC_OUT |
| 7 | NRST | I/O | RST | Device reset input / internal reset output (active low) |  |
| 8 | VSSA/VREF- | S | - | Analog ground/Negative reference voltage |  |
| 9 | VDDA/VREF+ | S | - | Analog power supply/Positive reference voltage |  |
| 10 | PAO | I/O | TTa | $\begin{gathered} \text { TIM2_CH1/ } \\ \text { TIM2_ETR, } \\ \text { TSC_G1_IO1, } \\ \text { USART2_CTS, } \\ \text { EVENTOUT } \end{gathered}$ | ADC1 IN1, RTC_TAMP2/WK UP1 |
| 11 | PA1 | I/O | TTa | TIM2_CH2, TSC_G1_IO2, USART2_RTS_D E, TIM15_CH1N, EVENTOUT | ADC1 IN2, RTC_REFIN |
| 12 | PA2 | I/O | TTa | TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_OUT, TIM15_CH1, EVENTOUT | $\begin{aligned} & \text { ADC1_IN3, } \\ & \text { COMP2_INM } \end{aligned}$ |
| 13 | PA3 | I/O | TTa | TIM2_CH4, TSC_G1_IO4, USART2_RX, TIM15_CH2, EVENTOUT | ADC1_IN4 |
| 14 | $\mathrm{PA} 4{ }^{(2)}$ | I/O | TTa | $\begin{gathered} \text { TIM3_CH2, } \\ \text { TSC_G2_IO1, } \\ \text { SPI1_NSS, } \\ \text { USART2_CK, } \\ \text { EVENTOUT } \end{gathered}$ | ADC2_IN1, DAC1_OUT1, COMP2_INM4, COMP4_INM4, COMP6 INM4 |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number |  |  |  | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 | Pin name (function after reset) |  |  | Alternate functions | Additional functions |
| 15 | PA5 ${ }^{(2)}$ | I/O | TTa | $\begin{aligned} & \text { TIM2_CH1/ } \\ & \text { TIM2_ETR, } \\ & \text { TSC_G2_IO2, } \\ & \text { SPI1_SCK, } \\ & \text { EVENTOUT } \end{aligned}$ | ADC2_IN2, DAC1_OUT2, OPAMP2_VINM |
| 16 | PA6 ${ }^{(2)}$ | I/O | TTa | TIM16_CH1, TIM3_CH1, TSC_G2_IO3, SPI1_MISO, TIM1_BKIN, , EVENTOUT | ADC2_IN3, DAC2_OUT1, OPAMP2_VOUT |
| 17 | PA7 | I/O | TTa | TIM17_CH1, TIM3_CH2, TSC_G2_IO4, SPI1_MOSI, TIM1_CH1N, EVENTOUT | $\begin{gathered} \text { ADC2_IN4, } \\ \text { COMP2_INP, } \\ \text { OPAMP2_VINP } \end{gathered}$ |
| 18 | PB0 | I/O | TTa | $\begin{aligned} & \text { TIM3_CH3, } \\ & \text { TSC_G3_IO2, } \\ & \text { TIM1_CH2N, } \\ & \text { EVENTOUT } \end{aligned}$ | ADC1 IN11, COMP4 INP, OPAMP2_VINP |
| 19 | PB1 | I/O | TTa | TIM3_CH4, TSC_G3_IO3, TIM1_CH3N, COMP4_OUT, EVENTOUT | ADC1_IN12 |
| 20 | NPOR | 1 | POR ${ }^{(3)}$ | Device power-on reset input |  |
| 21 | PB10 | I/O | TT | TIM2_CH3, TSC_SYNC, USART3_TX, EVENTOUT | - |
| 22 | PB11 | I/O | TTa | $\begin{aligned} & \text { TIM2_CH4, } \\ & \text { TSC_G6_IO1, } \\ & \text { USART3_RX, } \\ & \text { EVENTOUT } \end{aligned}$ | COMP6_INP |
| 23 | VSS | S | - | Digital ground |  |
| 24 | VDD | S | - | Digital power supply |  |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number | Pin name (function after reset) |  | 00.3000000 | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 |  |  |  | Alternate functions | Additional functions |
| 25 | PB12 | I/O | TTa | TSC_G6_IO2, TIM1_BKIN, USART3_CK, EVENTOUT | ADC2_IN13 |
| 26 | PB13 | I/O | TTa | $\begin{aligned} & \text { TSC_G6_IO3, } \\ & \text { TIM1_CH1N, } \\ & \text { USART3_CTS, } \\ & \text { EVENTOUT } \end{aligned}$ | ADC1_IN13 |
| 27 | PB14 | I/O | TTa | TIM15_CH1, TSC_G6_IO4, TIM1_CH2N, USART3_RTS_D E, EVENTOUT | ADC2 IN14, OPAMP2_VINP |
| 28 | PB15 | I/O | TTa | TIM15_CH2, TIM15_CH1N, TIM1_CH3N, EVENTOUT | ADC2 IN15, COMP6_INM, RTC_REFIN |
| 29 | PA8 | I/O | FT | MCO, <br> TIM1_CH1, USART1_CK, EVENTOUT | - |
| 30 | PA9 | I/O | FT | TSC_G4_IO1, TIM1_CH2, USART1_TX, TIM15_BKIN, TIM2_CH3, EVENTOUT | - |
| 31 | PA10 | I/O | FT | TIM17_BKIN, TSC_G4_IO2, TIM1_CH3, USART1_RX, COMP6_OUT, TIM2 $\mathrm{C} H 4$, EVENTOUT | - |
| 32 | PA11 | I/O | FT | TIM1_CH1N, USART1_CTS, CAN_RX, TIM1_CH4, TIM1_BKIN2, EVENTOUT | - |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number | Pin name (function after reset) | $\underset{\substack{2 \\ i n}}{\stackrel{0}{2}}$ |  | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 |  |  |  | Alternate functions | Additional functions |
| 33 | PA12 | I/O | FT | TIM16_CH1, TIM1_CH2N, USART1_RTS_D E, COMP2_OUT, CAN_TX, TIM1_ETR, EVENTOUT | - |
| 34 | PA13 | I/O | FT | JTMS/SWDAT, TIM16_CH1N, TSC_G4_IO3, IR_OUT, USART3_CTS, EVENTOUT | - |
| 35 | VSS | S | - | - | - |
| 36 | VDD | S | - | - | - |
| 37 | PA14 | I/O | FTf | JTCK/SWCLK, TSC_G4_IO4, I2C1_SDA, TIM1_BKIN, USART2_TX, EVENTOUT | - |
| 38 | PA15 | I/O | FTf | JTDI, <br> TIM2_CH1/TIM2 <br> ETR, <br> TSC_SYNC, I2C1_SCL, SPI1_NSS, USART2_RX, TIM1_BKIN, EVENTOUT | - |
| 39 | PB3 | I/O | FT | JTDO/TRACE SWO, <br> TIM2_CH2, TSC_G5_IO1, SPI1_SCK, USART2_TX, TIM3 ETR, EVENTOUT | - |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number | Pin name (function after reset) | $\underset{i=1}{\stackrel{0}{2}}$ | 00.300000 | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 |  |  |  | Alternate functions | Additional functions |
| 40 | PB4 | I/O | FT | NJTRST, <br> TIM16_CH1, TIM3_CH1, TSC_G5_IO2, SPI1_MISO, USART2_RX, TIM17_BKIN, EVENTOUT | - |
| 41 | PB5 | I/O | FT | $\begin{aligned} & \hline \text { TIM16_BKIN, } \\ & \text { TIM3_CH2, } \\ & \text { I2C1_SMBA, } \\ & \text { SPI1_MOSI, } \\ & \text { USART2_CK, } \\ & \text { TIM17_CH1, } \\ & \text { EVENTOUT } \end{aligned}$ | - |
| 42 | PB6 | I/O | FTf | $\begin{aligned} & \text { TIM16_CH1N, } \\ & \text { TSC_G5_IO3, } \\ & \text { I2C1_SCL, } \\ & \text { USART1_TX, } \\ & \text { EVENTOUT } \end{aligned}$ | - |
| 43 | PB7 | I/O | FTf | TIM17_CH1N, TSC_G5_IO4, I2C1_SDA, USART1_RX, TIM3_CH4, EVENTOUT | - |
| 44 | BOOT0 | 1 | B |  | - |
| 45 | PB8 | I/O | FTf | TIM16_CH1, TSC_SYNC, I2C1_SCL, USART3_RX, CAN_RX, TIM1_BKIN, EVENTOUT | - |
| 46 | PB9 | I/O | FTf | $\begin{gathered} \text { TIM17_CH1, } \\ \text { I2C1_SDA, } \\ \text { IR_OUT, } \\ \text { USART3_TX, } \\ \text { COMP2_OUT, } \\ \text { CAN_TX, } \\ \text { EVENTOUT } \end{gathered}$ | - |

Table 12. STM32F328C8 pin definitions (continued)

| Pin Number |  |  |  | Pin functions |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LQFP48 | Pin name (function after reset) | $\begin{aligned} & 0 . \\ & \underset{2}{2} \\ & \text { İ } \end{aligned}$ |  | Alternate functions | Additional functions |
| 47 | VSS | S | - | - | - |
| 48 | VDD | S | - | - | - |

1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA ), the use of GPIO PC13 to PC15 in output mode is limited:

- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the reference manual.
2. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.
3. This pin is powered by VDDA.


Table 13. Alternate functions (continued)

Table 13. Alternate functions (continued)


Table 13. Alternate functions (continued)


## 5 Memory mapping

Figure 5. STM32F328C8 memory map


Table 14. STM32F328C8 peripheral register boundary addresses

| Bus | Boundary address | Size (bytes) | Peripheral |
| :---: | :---: | :---: | :---: |
| AHB3 | 0x5000 0000-0x5000 03FF | 1 K | ADC1-ADC2 |
|  | 0x4800 1800-0x4FFF FFFF | $\sim 132 \mathrm{M}$ | Reserved |
| AHB2 | 0x4800 1400-0x4800 17FF | 1 K | GPIOF |
|  | 0x4800 1000-0x4800 13FF | 1 K | Reserved |
| AHB2 | 0x4800 0C00-0x4800 0FFF | 1 K | GPIOD |
|  | 0x4800 $0800-0 \times 4800$ 0BFF | 1 K | GPIOC |
|  | 0x4800 0400-0x4800 07FF | 1 K | GPIOB |
|  | 0x4800 0000-0x4800 03FF | 1 K | GPIOA |
|  | 0x4002 4400-0x47FF FFFF | $\sim 128 \mathrm{M}$ | Reserved |
| AHB1 | 0x4002 4000-0x4002 43FF | 1 K | TSC |
|  | 0x4002 3400-0x4002 3FFF | 3 K | Reserved |
|  | 0x4002 3000-0x4002 33FF | 1 K | CRC |
|  | 0x4002 2400-0x4002 2FFF | 3 K | Reserved |
|  | 0x4002 2000-0x4002 23FF | 1 K | Flash interface |
|  | 0x4002 1400-0x4002 1FFF | 3 K | Reserved |
|  | 0x4002 1000-0x4002 13FF | 1 K | RCC |
|  | 0x4002 0400-0x4002 0FFF | 3 K | Reserved |
|  | 0x4002 0000-0x4002 03FF | 1 K | DMA1 |
|  | 0x4001 $8000-0 \times 4001$ FFFF | 32 K | Reserved |
| APB2 | 0x4001 4C00-0x4001 73FF | 12 K | Reserved |
|  | 0x4001 4800-0x4001 4BFF | 1 K | TIM17 |
|  | 0x4001 4400-0x4001 47FF | 1 K | TIM16 |
|  | 0x4001 4000-0x4001 43FF | 1 K | TIM15 |
|  | 0x4001 3C00-0x4001 3FFF | 1 K | Reserved |
|  | 0x4001 3800-0x4001 3BFF | 1 K | USART1 |
|  | 0x4001 3400-0x4001 37FF | 1 K | Reserved |
|  | 0x4001 3000-0x4001 33FF | 1 K | SPI1 |
|  | 0x4001 2C00-0x4001 2FFF | 1 K | TIM1 |
|  | 0x4001 $0800-0 \times 4001$ 2BFF | 9 K | Reserved |
|  | 0x4001 0400-0x4001 07FF | 1 K | EXTI |
|  | 0x4001 $0000-0 \times 4001$ 03FF | 1 K | SYSCFG + COMP + OPAMP |
|  | 0x4000 9C00-0x4000 FFFF | 25 K | Reserved |

Table 14. STM32F328C8 peripheral register boundary addresses (continued)

| Bus | Boundary address | Size (bytes) | Peripheral |
| :---: | :---: | :---: | :---: |
| APB1 | 0x4000 9800-0x4000 9BFF | 1 K | DAC2 |
|  | 0x4000 7800-0x4000 97FF | 8 K | Reserved |
|  | 0x4000 7400-0x4000 77FF | 1 K | DAC1 |
|  | 0x4000 7000-0x4000 73FF | 1 K | PWR |
|  | 0x4000 6800-0x4000 6FFF | 2 K | Reserved |
|  | 0x4000 6400-0x4000 67FF | 1 K | bxCAN |
|  | 0x4000 5800-0x4000 63FF | 3 K | Reserved |
|  | 0x4000 5400-0x4000 57FF | 1 K | I2C1 |
|  | 0x4000 4C00-0x4000 53FF | 2 K | Reserved |
|  | 0x4000 4800-0x4000 4BFF | 1 K | USART3 |
|  | 0x4000 4400-0x4000 47FF | 1 K | USART2 |
|  | 0x4000 3400-0x4000 43FF | 2 K | Reserved |
|  | 0x4000 3000-0x4000 33FF | 1 K | IWDG |
|  | 0x4000 2C00-0x4000 2FFF | 1 K | WWDG |
|  | 0x4000 2800-0x4000 2BFF | 1 K | RTC |
|  | 0x4000 1800-0x4000 27FF | 4 K | Reserved |
|  | 0x4000 1400-0x4000 17FF | 1 K | TIM7 |
|  | 0x4000 1000-0x4000 13FF | 1 K | TIM6 |
|  | 0x4000 0800-0x4000 0FFF | 2 K | Reserved |
|  | 0x4000 0400-0x4000 07FF | 1 K | TIM3 |
|  | 0x4000 0000-0x4000 03FF | 1 K | TIM2 |
|  | 0x2000 3000-3FFF FFFF | $\sim 512 \mathrm{M}$ | Reserved |
|  | 0x2000 0000-0x2000 2FFF | K | SRAM |
|  | 0x1FFF F800-0x1FFF FFFF | 2 K | Option bytes |
|  | 0x1FFF D800-0x1FFF F7FF | 8 K | System memory |
|  | 0x1000 2000-0x1FFF D7FF | $\sim 256 \mathrm{M}$ | Reserved |
|  | 0x1000 0000-0x1000 0FFF | 4 K | CCM RAM |
|  | 0x0804 0000-0x0FFF FFFF | $\sim 128 \mathrm{M}$ | Reserved |
|  | 0x0800 0000-0x0800 FFFF | 64 K | Main Flash memory |
|  | 0x0004 0000-0x07FF FFFF | $\sim 128 \mathrm{M}$ | Reserved |
|  | 0x0000 000-0x0000 FFFF | 64 K | Main Flash memory, system memory or SRAM depending on BOOT configuration |

## 6 Electrical characteristics

### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to $\mathrm{V}_{\text {SS }}$.

### 6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on $100 \%$ of the devices with an ambient temperature at $T_{A}=25^{\circ} \mathrm{C}$ and $T_{A}=T_{A} \max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$ ).

### 6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=3.3 \mathrm{~V}$. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where $95 \%$ of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$ ).

### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 6.

### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 7.

| Figure 6. Pin loading conditions | Figure 7. Pin input voltage |
| :---: | :---: |
|  |  |
| мs $=50 \mathrm{pF} 19210 \mathrm{~V} 1$ |  |

### 6.1.6 Power supply scheme

Figure 8. Power supply scheme


Caution: Each power supply pair $\left(V_{D D} / V_{S S}, V_{D D A} / V_{S S A}\right.$ etc..) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

### 6.1.7 Current consumption measurement

Figure 9. Current consumption measurement scheme


### 6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics, Table 16: Current characteristics, and Table 17: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 15. Voltage characteristics ${ }^{(1)}$

| Symbol | Ratings | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$ | External main supply voltage (including $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{BAT}}$ and $V_{D D}$ ) | -0.3 | 1.95 | V |
| $\mathrm{V}_{\text {DDA }}-\mathrm{V}_{\text {SS }}$ | External analog supply voltage | -0.3 | 4.0 |  |
| $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {DDA }}$ | Allowed voltage difference for $\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\mathrm{DDA}}$ | - | 0.4 |  |
| $\mathrm{V}_{\text {IN }}{ }^{(2)}$ | Input voltage on FT and FTf pins | $V_{S S}-0.3$ | $\mathrm{V}_{\mathrm{DD}}+4.0$ |  |
|  | Input voltage on TTa | $V_{S S}-0.3$ | 4.0 |  |
|  | Input voltage on POR pin | $V_{S S}-0.3$ | $\mathrm{V}_{\mathrm{DDA}}+4.0$ |  |
|  | Input voltage on any other pin | $\mathrm{V}_{\text {SS }}-0.3$ | 4.0 |  |
|  | Input voltage on Boot0 pin | 0 | 9 |  |
| $\left\|\Delta \mathrm{V}_{\text {DDx }}\right\|$ | Variations between different $\mathrm{V}_{\mathrm{DD}}$ power pins | - | 50 | mV |
| $\left\|\mathrm{V}_{\text {SSX }}-\mathrm{V}_{\text {Ss }}\right\|$ | Variations between all the different ground pins | - | 50 |  |
| $\mathrm{V}_{\text {ESD (HBM) }}$ | Electrostatic discharge voltage (human body model) | see Section 6.3.11: Electrical sensitivity characteristics |  | - |

1. All main power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}\right)$ and ground $\left(\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{SSA}}\right)$ pins must always be connected to the external power supply, in the permitted range. The following relationship must be respected between $V_{D D A}$ and $V_{D D}$ :
$V_{\text {DDA }}$ must power on before or at the same time as $V_{D D}$ in the power up sequence.
$V_{\text {DDA }}$ must be greater than or equal to $V_{D D}$.
2. $\mathrm{V}_{\mathrm{IN}}$ maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed injected current values.

Table 16. Current characteristics

| Symbol | Ratings | Max. | Unit |
| :---: | :---: | :---: | :---: |
| $\Sigma l_{\text {VDD }}$ | Total current into sum of all VDD_x power lines (source) ${ }^{(1)}$ | 140 | mA |
| $\Sigma l_{\text {vss }}$ | Total current out of sum of all VSS_x ground lines (sink) ${ }^{(1)}$ | -140 |  |
| $I_{\text {VDD }}$ | Maximum current into each $\mathrm{V}_{\mathrm{DD}_{2} \mathrm{x}}$ power line (source) ${ }^{(1)}$ | 100 |  |
| Ivss | Maximum current out of each $\mathrm{V}_{\text {SS }} \mathrm{x}$ ground line (sink) ${ }^{(1)}$ | 100 |  |
| $\mathrm{I}_{\mathrm{IO} \text { (PIN) }}$ | Output current sunk by any I/O and control pin | 25 |  |
|  | Output current source by any I/O and control pin | -25 |  |
| $\Sigma l_{\text {IO(PIN }}$ | Total output current sunk by sum of all I/Os and control pins ${ }^{(2)}$ | 80 |  |
|  | Total output current sourced by sum of all I/Os and control pins ${ }^{(2)}$ | -80 |  |
| $\mathrm{I}_{\text {INJ(PIN) }}$ | Injected current on TT, FT, FTf and B pins ${ }^{(3)}$ | -5/+0 |  |
|  | Injected current on TC and RST pin ${ }^{(4)}$ | $\pm 5$ |  |
|  | Injected current on TTa pins ${ }^{(5)}$ | $\pm 5$ |  |
| $\Sigma \mathrm{I}_{\mathrm{INJ}(\mathrm{PIN})}$ | Total injected current (sum of all I/O and control pins) ${ }^{(6)}$ | $\pm 25$ |  |

1. All main power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDA}}\right)$ and ground $\left(\mathrm{V}_{\mathrm{SS}}\right.$ and $\left.\mathrm{V}_{\mathrm{SSA}}\right)$ pins must always be connected to the external power supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
4. A positive injection is induced by $V_{I N}>V_{D D}$ while a negative injection is induced by $V_{I N}<V_{S S}$. $I_{I N J(P I N)}$ must never be exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by $V_{I N}>V_{D D A}$ while a negative injection is induced by $V_{I N}<V_{S S}$. $I_{I N J}$ (PIN) must never be exceeded. Refer also to Table 15: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note 2. below Table 56.
6. When several inputs are submitted to a current injection, the maximum $\Sigma l_{I N J(P I N)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 17. Thermal characteristics

| Symbol | Ratings | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\mathrm{T}_{\text {STG }}$ | Storage temperature range | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{J}}$ | Maximum junction temperature | 150 | ${ }^{\circ} \mathrm{C}$ |

### 6.3 Operating conditions

### 6.3.1 General operating conditions

Table 18. General operating conditions

| Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {HCLK }}$ | Internal AHB clock frequency | - | 0 | 72 |  |
| $\mathrm{f}_{\text {PCLK1 }}$ | Internal APB1 clock frequency | - | 0 | 36 | MHz |
| $\mathrm{f}_{\text {PCLK2 }}$ | Internal APB2 clock frequency | - | 0 | 72 |  |
| $V_{\text {DD }}$ | Standard operating voltage | - | 1.65 | 1.95 | V |
| $\mathrm{V}_{\text {DDA }}$ | Analog operating voltage (OPAMP and DAC not used) | Must have a potential equal to or higher than $V_{D D}$ | 1.65 | 3.6 |  |
|  | Analog operating voltage (OPAMP and DAC used) |  | 2.4 | 3.6 |  |
| $V_{\text {DDA }}$ | Analog operating voltage (ADC used) |  | 1.8 V | 3.6 V | V |
| $V_{\text {BAT }}$ | Backup operating voltage |  | 1.65 | 3.6 | V |
| $\mathrm{V}_{\text {IN }}$ | I/O input voltage | TC I/O | -0.3 | $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
|  |  | TTa I/O | -0.3 | $\mathrm{V}_{\mathrm{DDA}}+0.3$ |  |
|  |  | FT, FTf and POR I/O pins | -0.3 | 5.2 |  |
|  |  | BOOT0 | 0 | 5.5 |  |
| PD | Power dissipation at $\mathrm{T}_{\mathrm{A}}=$ $85^{\circ} \mathrm{C}$ for suffix 6 or $\mathrm{T}_{\mathrm{A}}=$ $105^{\circ} \mathrm{C}$ for suffix $7^{(1)}$ | LQFP48 | - | 364 | mW |
| TA | Ambient temperature for 6 suffix version | Maximum power dissipation | -40 | 85 | ${ }^{\circ} \mathrm{C}$ |
|  |  | Low power dissipation ${ }^{(2)}$ | -40 | 105 |  |
|  | Ambient temperature for 7 suffix version | Maximum power dissipation | -40 | 105 | ${ }^{\circ} \mathrm{C}$ |
|  |  | Low power dissipation ${ }^{(2)}$ | -40 | 125 |  |
| TJ | Junction temperature range | 6 suffix version | -40 | 105 | ${ }^{\circ} \mathrm{C}$ |
|  |  | 7 suffix version | -40 | 125 |  |

1. If $T_{A}$ is lower, higher $P_{D}$ values are allowed as long as $T_{J}$ does not exceed $T_{J \max }$ (see Section 7.2: Thermal characteristics).
2. In low power dissipation state, $T_{A}$ can be extended to this range as long as $T_{J}$ does not exceed $T_{J m a x}$ (see Section 7.2: Thermal characteristics).

### 6.3.2 Operating conditions at power-up / power-down

The parameters given in Table 19 are derived from tests performed under the ambient temperature condition summarized in Table 18.

Table 19. Operating conditions at power-up / power-down

| Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $t_{V D D}$ | $V_{D D}$ rise time rate | - | 0 | ¥ | $\mu \mathrm{s} / \mathrm{V}$ |
|  | $V_{\text {DD }}$ fall time rate |  | 20 | $¥$ |  |
| $t_{\text {VDDA }}$ | $V_{\text {DDA }}$ rise time rate | - | 0 | $¥$ |  |
|  | $V_{\text {DDA }}$ fall time rate |  | 20 | ¥ |  |

### 6.3.3 Embedded reference voltage

The parameters given in Table 20 are derived from tests performed under ambient temperature and $\mathrm{V}_{\mathrm{DD}}$ supply voltage conditions summarized in Table 18.

Table 20. Embedded internal reference voltage

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REFINT }}$ | Internal reference voltage | $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+105^{\circ} \mathrm{C}$ | 1.16 | 1.2 | 1.25 | V |
|  | $-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$ | 1.16 | 1.2 | $1.24^{(1)}$ | V |  |
| $\mathrm{T}_{\text {S_vrefint }}$ | ADC sampling time when <br> reading the internal <br> reference voltage | - | 2.2 | - | - | $\mu \mathrm{s}$ |
| $\mathrm{V}_{\text {RERINT }}$ | Internal reference voltage <br> spread over the <br> temperature range | $\mathrm{V}_{\mathrm{DD}}=31.8 \mathrm{~V} \pm 10 \mathrm{mV}$ | - | - | $10^{(2)}$ | mV |
| $\mathrm{T}_{\text {Coeff }}$ | Temperature coefficient | - | - | - | $100^{(2)}$ | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {REFINT_RDY }}{ }^{(3)}$ | Internal reference voltage <br> temporization | - | 1.5 | 2.5 | 4.5 | ms |

1. Data based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
3. Guaranteed by design, not tested in production. Latency between the time when pin NPOR is set to 1 by the application and the time when $\mathrm{V}_{\text {REFINTRDYF }}$ is set to 1 by the hardware.

Table 21. Internal reference voltage calibration values

| Calibration value name | Description | Memory address |
| :---: | :--- | :---: |
| $V_{\text {REFINT_CAL }}$ | Raw data acquired at <br> temperature of $30^{\circ} \mathrm{C}$ <br> $V_{\text {DDA }}=3.3 \mathrm{~V}$ | $0 \times 1$ FFF F7BA - 0x1FFF F7BB |

### 6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.
The current consumption is measured as described in Figure 9: Current consumption measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Note: $\quad$ The total current consumption is the sum of IDD and IDDA.

## Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$ (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the $\mathrm{f}_{\text {HCLK }}$ frequency ( 0 wait state from 0 to $24 \mathrm{MHz}, 1$ wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz )
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{\text {PCLK2 }}=f_{\text {HCLK }}$ and $f_{\text {PCLK } 1}=f_{\text {HCLK/2 }}$
- When $\mathrm{f}_{\mathrm{HCLK}}>8 \mathrm{MHz}$, the PLL is ON and the PLL input is equal to $\mathrm{HSI} / 2(4 \mathrm{MHz})$ or HSE ( 8 MHz ) in bypass mode.

The parameters given in to are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18.

Table 22. Typical and maximum current consumption from $V_{D D}$ supply at $V_{D D}=1.8 \mathrm{~V}$

| Symbol | Parameter | Conditions | $\mathrm{f}_{\mathrm{HCLK}}$ | All peripherals enabled |  |  |  | All peripherals disabled |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(1)}$ |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(1)}$ |  |  |  |
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  |
| $I_{\text {DD }}$ | Supply current in Run mode, executing from Flash | External clock (HSE bypass) | 72 MHz | 46.4 | 49.4 | 50.4 | 52.1 | 26.1 | 27.4 | 27.9 | 28.2 | mA |
|  |  |  | 64 MHz | 40.4 | 42.8 | 43.9 | 46.4 | 23.4 | 24.6 | 25.0 | 25.3 |  |
|  |  |  | 48 MHz | 31.0 | 32.7 | 33.7 | 35.1 | 17.9 | 18.7 | 19.2 | 19.5 |  |
|  |  |  | 32 MHz | 21.2 | 22.3 | 23.0 | 24.3 | 12.3 | 12.9 | 13.2 | 13.4 |  |
|  |  |  | 24 MHz | 16.1 | 16.9 | 17.6 | 17.9 | 9.4 | 9.9 | 10.1 | 10.4 |  |
|  |  |  | 8 MHz | 5.5 | 6.1 | 6.3 | 7.1 | 3.26 | 3.51 | 3.76 | 3.93 |  |
|  |  |  | 1 MHz | 1.03 | 1.25 | 1.52 | 1.62 | 0.71 | 0.89 | 1.00 | 1.14 |  |
|  |  | Internal <br> clock (HSI) | 64 MHz | 37.9 | 40.1 | 41.3 | 42.0 | 23.1 | 24.3 | 24.8 | 25.0 |  |
|  |  |  | 48 MHz | 29.1 | 30.6 | 31.6 | 32.0 | 17.7 | 18.6 | 19.0 | 19.2 |  |
|  |  |  | 32 MHz | 19.9 | 20.9 | 21.6 | 22.0 | 12.1 | 12.8 | 13.1 | 13.3 |  |
|  |  |  | 24 MHz | 15.2 | 16.0 | 16.5 | 16.8 | 9.3 | 9.7 | 10.0 | 10.2 |  |
|  |  |  | 8 MHz | 5.4 | 5.7 | 6.0 | 6.2 | 3.29 | 3.57 | 3.81 | 3.93 |  |
|  | Supply current in Run mode, executing from RAM | External clock (HSE bypass) | 72 MHz | 46.3 | $49.2^{(2)}$ | 50.5 | $51.7{ }^{(2)}$ | 27.3 | $28.8{ }^{(2)}$ | 29.5 | $29.7^{(2)}$ |  |
|  |  |  | 64 MHz | 40.1 | 44.0 | 45.1 | 45.7 | 24.2 | 25.6 | 26.2 | 26.5 |  |
|  |  |  | 48 MHz | 30.9 | 33.3 | 34.4 | 34.8 | 17.9 | 19.4 | 19.9 | 20.2 |  |
|  |  |  | 32 MHz | 21.2 | 22.6 | 23.3 | 23.6 | 12.4 | 13.1 | 13.4 | 13.7 |  |
|  |  |  | 24 MHz | 16.1 | 17.0 | 17.7 | 18.0 | 9.4 | 9.9 | 10.2 | 10.4 |  |
|  |  |  | 8 MHz | 5.4 | 6.0 | 6.1 | 6.3 | 3.11 | 3.35 | 3.57 | 3.74 |  |
|  |  |  | 1 MHz | 0.69 | 0.85 | 1.09 | 1.31 | 0.40 | 0.57 | 0.80 | 0.96 |  |
|  |  | Internal clock (HSI) | 64 MHz | 37.7 | 40.1 | 41.2 | 41.8 | 22.9 | 24.2 | 24.7 | 24.9 |  |
|  |  |  | 48 MHz | 29.5 | 31.1 | 32.2 | 32.6 | 18.0 | 19.0 | 19.6 | 19.8 |  |
|  |  |  | 32 MHz | 19.9 | 21.0 | 21.7 | 22.1 | 12.1 | 12.8 | 13.2 | 13.4 |  |
|  |  |  | 24 MHz | 15.1 | 16.0 | 16.5 | 16.8 | 9.1 | 9.6 | 9.9 | 10.1 |  |
|  |  |  | 8 MHz | 5.1 | 5.4 | 5.7 | 5.9 | 2.95 | 3.17 | 3.47 | 3.64 |  |

Table 22. Typical and maximum current consumption from $\mathrm{V}_{\mathrm{DD}}$ supply at $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$ (continued)

| Symbol | Parameter | Conditions | $\mathrm{f}_{\mathrm{HCLK}}$ | All peripherals enabled |  |  |  | All peripherals disabled |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(1)}$ |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(1)}$ |  |  |  |
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  |
| $I_{\text {D }}$ | Supply current in Sleep mode, executing from Flash or RAM | External clock (HSE bypass) | 72 MHz | 29.2 | $30.8^{(2)}$ | 32.0 | $33.4{ }^{(2)}$ | 6.3 | $6.6^{(2)}$ | 6.9 | $7.1^{(2)}$ | mA |
|  |  |  | 64 MHz | 26.1 | 27.5 | 28.5 | 29.7 | 5.6 | 5.9 | 6.2 | 6.4 |  |
|  |  |  | 48 MHz | 19.8 | 20.8 | 21.6 | 22.0 | 4.22 | 4.48 | 4.76 | 4.98 |  |
|  |  |  | 32 MHz | 13.3 | 14.0 | 14.6 | 15.0 | 2.84 | 3.06 | 3.33 | 3.56 |  |
|  |  |  | 24 MHz | 10.1 | 10.6 | 11.1 | 11.4 | 2.18 | 2.37 | 2.62 | 2.83 |  |
|  |  |  | 8 MHz | 3.31 | 3.83 | 3.88 | 4.04 | 0.61 | 0.79 | 1.03 | 1.25 |  |
|  |  |  | 1 MHz | 0.43 | 0.62 | 0.89 | 1.03 | 0.10 | 0.28 | 0.50 | 0.69 |  |
|  |  | Internal clock (HSI) | 64 MHz | 23.5 | 24.8 | 25.7 | 26.1 | 5.3 | 5.6 | 6.0 | 6.1 |  |
|  |  |  | 48 MHz | 17.8 | 18.7 | 19.5 | 19.9 | 4.00 | 4.27 | 4.58 | 4.74 |  |
|  |  |  | 32 MHz | 12.0 | 12.7 | 13.3 | 13.6 | 2.70 | 2.93 | 3.23 | 3.40 |  |
|  |  |  | 24 MHz | 9.1 | 9.6 | 10.1 | 10.3 | 2.08 | 2.32 | 2.55 | 2.72 |  |
|  |  |  | 8 MHz | 3.07 | 3.33 | 3.68 | 3.83 | 0.64 | 0.85 | 1.10 | 1.26 |  |

1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.

Table 23. Typical and maximum current consumption from the $\mathrm{V}_{\text {DDA }}$ supply

| Symbol | Parameter | Conditions (1) | $\mathrm{f}_{\mathrm{HCLK}}$ | $\mathrm{V}_{\text {DDA }}=2.4 \mathrm{~V}$ |  |  |  | $\mathrm{V}_{\text {DDA }}=3.6 \mathrm{~V}$ |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(2)}$ |  |  | Typ. | Max. @ $\mathrm{T}_{\mathrm{A}}{ }^{(2)}$ |  |  |  |
|  |  |  |  |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  | $25^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $105{ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{I}_{\text {DDA }}$ | Supply current in Run/Sleep mode, code executing from Flash or RAM | $\begin{aligned} & \text { HSE } \\ & \text { bypass } \end{aligned}$ | 72 MHz | 224 | $252^{(3)}$ | 265 | $269{ }^{(3)}$ | 245 | $272^{(3)}$ | 288 | $295{ }^{(3)}$ | $\mu \mathrm{A}$ |
|  |  |  | 64 MHz | 196 | 225 | 237 | 241 | 214 | 243 | 257 | 263 |  |
|  |  |  | 48 MHz | 147 | 174 | 183 | 186 | 159 | 186 | 196 | 201 |  |
|  |  |  | 32 MHz | 100 | 126 | 133 | 135 | 109 | 133 | 142 | 145 |  |
|  |  |  | 24 MHz | 79 | 102 | 107 | 108 | 85 | 108 | 113 | 116 |  |
|  |  |  | 8 MHz | 3 | 5 | 5 | 6 | 4 | 6 | 6 | 7 |  |
|  |  |  | 1 MHz | 3 | 5 | 5 | 6 | 3 | 5 | 6 | 6 |  |
|  |  | HSI clock | 64 MHz | 259 | 288 | 304 | 309 | 285 | 315 | 332 | 338 |  |
|  |  |  | 48 MHz | 208 | 239 | 251 | 254 | 230 | 258 | 271 | 277 |  |
|  |  |  | 32 MHz | 162 | 190 | 198 | 202 | 179 | 206 | 216 | 219 |  |
|  |  |  | 24 MHz | 140 | 168 | 175 | 178 | 155 | 181 | 188 | 191 |  |
|  |  |  | 8 MHz | 62 | 85 | 88 | 89 | 71 | 94 | 96 | 98 |  |

1. Current consumption from the $V_{\text {DDA }}$ supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency.
2. Data based on characterization results, not tested in production.
3. Data based characterization results and tested in production with code executing from RAM.

Table 24. Typical and maximum $V_{D D}$ consumption in Stop mode

| Symbol | Parameter | Conditions | Typ. @ $V_{D D}$ $\left(V_{D D}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=3.3 \mathrm{~V}\right)$ | Max. ${ }^{(1)}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.8 V | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$ | $\begin{array}{r} T_{A}= \\ 85^{\circ} \mathrm{C} \end{array}$ | $\begin{array}{r} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{array}$ |  |
| $\mathrm{I}_{\mathrm{DD}}$ | Supply current in Stop mode | All oscillators OFF | 5.67 | 16.7 | 150 | 345 | $\mu \mathrm{A}$ |

1. Data based on characterization results, not tested in production unless otherwise specified.

Table 25. Typical and maximum $V_{\text {DDA }}$ consumption in Stop mode

| Symbol | Parameter | Conditions | Typ.@ $\mathrm{V}_{\text {DDA }}\left(\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}\right)$ |  |  |  |  |  |  | Max. ${ }^{(1)}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.8 V | 2.0 V | 2.4 V | 2.7 V | 3.0 V | 3.3 V | 3.6 V | $\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 25^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ 85^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 105^{\circ} \mathrm{C} \end{gathered}$ |  |
| $I_{\text {DDA }}$ | Supply current in Stop mode | All oscillators OFF | 0.70 | 0.71 | 0.72 | 0.75 | 0.80 | 0.87 | 0.94 | 1.6 | 2.2 | 2.8 | $\mu \mathrm{A}$ |

[^0]Table 26. Typical and maximum current consumption from $\mathrm{V}_{\mathrm{BAT}}$ supply

| Symbol | Para meter | Conditions (1) | Typ.@V ${ }_{\text {BAT }}$ |  |  |  |  |  |  |  | $\begin{gathered} \text { Max. } \\ @ V_{B A T}=3.6 V^{(2)} \end{gathered}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1.65V | 1.8V | 2V | 2.4 V | 2.7V | 3V | 3.3 V | 3.6 V | $\begin{array}{r} T_{A}= \\ 25^{\circ} \mathrm{C} \end{array}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ 85^{\circ} \\ \mathrm{C} \end{gathered}$ | $\begin{gathered} T_{A}= \\ 105^{\circ} \mathrm{C} \end{gathered}$ |  |
| IDD_VBAT | Backup domain supply current | LSE \& RTC <br> ON; "Xtal <br> mode" <br> lower <br> driving <br> capability; <br> LSEDRV[1: $0]=\text { '00' }$ | 0.42 | 0.44 | 0.47 | 0.54 | 0.60 | 0.66 | 0.74 | 0.82 | - | - | - |  |
|  |  | LSE \& RTC <br> ON; "Xtal <br> mode" <br> higher <br> driving <br> capability; <br> LSEDRV[1: <br> 0] = '11' | 0.71 | 0.74 | 0.77 | 0.85 | 0.91 | 0.98 | 1.06 | 1.16 | - | - | - |  |

1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Data based on characterization results, not tested in production.

Figure 10. Typical $\mathrm{V}_{\mathrm{BAT}}$ current consumption (LSE and RTC ON/LSEDRV[1:0] = '00')


## Typical current consumption

The MCU is placed under the following conditions:

- $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=3.3 \mathrm{~V}$
- All I/O pins available on each package are in analog input configuration
- The Flash access time is adjusted to $\mathrm{f}_{\mathrm{HCLK}}$ frequency ( 0 wait states from 0 to 24 MHz , 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz ), and Flash prefetch is ON
- When the peripherals are enabled, $\mathrm{f}_{\mathrm{APB} 1}=\mathrm{f}_{\mathrm{AHB} / 2}, \mathrm{f}_{\mathrm{APB} 2}=\mathrm{f}_{\mathrm{AHB}}$
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of $2,4,8,16$ and 64 is used for the frequencies $4 \mathrm{MHz}, 2 \mathrm{MHz}, 1 \mathrm{MHz}$, 500 kHz and 125 kHz respectively.

Table 27. Typical current consumption in Run mode, code with data processing running from Flash

| Symbol | Parameter | Conditions | $\mathrm{f}_{\mathrm{HCLK}}$ | Typ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Peripherals enabled | Peripherals disabled |  |
| $I_{\text {DD }}$ | Supply current in Run mode from $V_{D D}$ supply | Running from HSE crystal clock 8 MHz , code executing from Flash | 72 MHz | 44.1 | 25.2 | mA |
|  |  |  | 64 MHz | 39.4 | 22.6 |  |
|  |  |  | 48 MHz | 30.5 | 17.3 |  |
|  |  |  | 32 MHz | 21.1 | 11.8 |  |
|  |  |  | 24 MHz | 16.2 | 8.9 |  |
|  |  |  | 16 MHz | 10.6 | 6.1 |  |
|  |  |  | 8 MHz | 5.3 | 3.17 |  |
|  |  |  | 4 MHz | 3.09 | 1.86 |  |
|  |  |  | 2 MHz | 1.80 | 1.16 |  |
|  |  |  | 1 MHz | 1.15 | 0.81 |  |
|  |  |  | 500 KHz | 0.83 | 0.58 |  |
|  |  |  | 125 KHz | 0.58 | 0.47 |  |
| $\mathrm{I}_{\text {DDA }}{ }^{(1)(2)}$ | Supply current in Run mode from $V_{\text {DDA }}$ supply |  | 72 MHz | 234.9 |  | $\mu \mathrm{A}$ |
|  |  |  | 64 MHz | 206.7 |  |  |
|  |  |  | 48 MHz | 154.2 |  |  |
|  |  |  | 32 MHz | 106.3 |  |  |
|  |  |  | 24 MHz | 83.4 |  |  |
|  |  |  | 16 MHz | 60.4 |  |  |
|  |  |  | 8 MHz | 0.87 |  |  |
|  |  |  | 4 MHz | 0.87 |  |  |
|  |  |  | 2 MHz | 0.87 |  |  |
|  |  |  | 1 MHz | 0.87 |  |  |
|  |  |  | 500 KHz | 0.87 |  |  |
|  |  |  | 125 KHz | 0.87 |  |  |

1. VDDA moniitoring is OFF
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

Table 28. Typical current consumption in Sleep mode, code running from Flash or RAM

| Symbol | Parameter | Conditions | $\mathbf{f}_{\mathbf{H C L K}}$ | Typ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Peripherals enabled | Peripherals disabled |  |
| $\mathrm{I}_{\mathrm{DD}}$ | Supply current in Run mode from $V_{D D}$ supply | Running from HSE crystal clock 8 MHz , code executing from Flash | 72 MHz | 28.7 | 6.0 | mA |
|  |  |  | 64 MHz | 25.8 | 5.4 |  |
|  |  |  | 48 MHz | 19.9 | 4.10 |  |
|  |  |  | 32 MHz | 13.6 | 2.81 |  |
|  |  |  | 24 MHz | 10.4 | 2.17 |  |
|  |  |  | 16 MHz | 6.7 | 1.52 |  |
|  |  |  | 8 MHz | 3.28 | 0.70 |  |
|  |  |  | 4 MHz | 2.06 | 0.58 |  |
|  |  |  | 2 MHz | 1.28 | 0.49 |  |
|  |  |  | 1 MHz | 0.89 | 0.45 |  |
|  |  |  | 500 KHz | 0.69 | 0.43 |  |
|  |  |  | 125 KHz | 0.50 | 0.38 |  |
| $\mathrm{I}_{\text {DDA }}{ }^{(1)}$ | Supply current in Run mode from $V_{\text {DDA }}$ supply |  | 72 MHz | 234.9 |  | $\mu \mathrm{A}$ |
|  |  |  | 64 MHz | 206.7 |  |  |
|  |  |  | 48 MHz | 154.2 |  |  |
|  |  |  | 32 MHz | 106.3 |  |  |
|  |  |  | 24 MHz | 83.4 |  |  |
|  |  |  | 16 MHz | 60.4 |  |  |
|  |  |  | 8 MHz | 0.87 |  |  |
|  |  |  | 4 MHz | 0.87 |  |  |
|  |  |  | 2 MHz | 0.87 |  |  |
|  |  |  | 1 MHz | 0.87 |  |  |
|  |  |  | 500 KHz | 0.87 |  |  |
|  |  |  | 125 KHz | 0.87 |  |  |

1. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.

## I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

## I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

## I/O dynamic current consumption

In addition to the internal peripheral current consumption (seeTable 30: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$
\mathrm{I}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{DD}} \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{C}
$$

where
$I_{\text {SW }}$ is the current sunk by a switching I/O to charge/discharge the capacitive load
$V_{D D}$ is the MCU supply voltage
$\mathrm{f}_{\mathrm{SW}}$ is the I/O switching frequency
$C$ is the total capacitance seen by the I/O pin: $\mathrm{C}=\mathrm{C}_{\mathrm{INT}}+\mathrm{C}_{\mathrm{EXT}+\mathrm{CS}}$
The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 29. Switching output I/O current consumption


1. $\mathrm{CS}=5 \mathrm{pF}$ (estimated value).

## On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
- with all peripherals clocked off
- with only one peripheral clocked on
- ambient operating temperature at $25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDA}}=3.3 \mathrm{~V}$.

Table 30. Peripheral current consumption

| Peripheral | Typical consumption ${ }^{(1)}$ | Unit |
| :---: | :---: | :---: |
|  | $I_{\text {D }}$ |  |
| BusMatrix ${ }^{(2)}$ | 11.1 | $\mu \mathrm{A} / \mathrm{MHz}$ |
| DMA1 | 8.0 |  |
| CRC | 2.1 |  |
| GPIOA | 8.7 |  |
| GPIOB | 8.4 |  |
| GPIOC | 8.4 |  |
| GPIOD | 2.6 |  |
| GPIOF | 1.7 |  |
| TSC | 4.7 |  |
| ADC1\&2 | 17.4 |  |
| APB2-Bridge ${ }^{(3)}$ | 3.3 |  |
| SYSCFG | 4.2 |  |
| TIM1 | 8.2 |  |
| USART1 | 20.3 |  |
| TIM15 | 13.8 |  |
| TIM16 | 9.7 |  |
| TIM17 | 10.3 |  |
| APB1-Bridge ${ }^{(3)}$ | 5.3 |  |
| TIM2 | 43.4 |  |
| TIM3 | 34.0 |  |
| TIM6 | 9.7 |  |
| TIM7 | 10.3 |  |
| WWDG | 6.9 |  |
| USART2 | 18.8 |  |
| USART3 | 19.1 |  |
| I2C1 | 13.3 |  |

Table 30. Peripheral current consumption (continued)

| Peripheral | Typical consumption ${ }^{(1)}$ | Unit |
| :---: | :---: | :---: |
|  | IDD $^{*}$ |  |
| CAN | 31.3 |  |  |
| PWR | 4.7 |  |
| DAC | 15.4 |  |
| DAC2 | 8.6 |  |
| SPI1 | 8.2 |  |

1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU or DMA1).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.

### 6.3.5 Wakeup time from low-power mode

The wakeup times given in are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep mode: the wakeup event is WFE.
- WKUP1 (PA0) pin is used to wakeup from Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and $V_{D D}$ supply voltage conditions summarized in Table 18.

Table 31. Low-power mode wakeup timings

| Symbol | Parameter | $\begin{gathered} \text { Typ. } @ V_{D D}=1.8 \mathrm{~V}, \\ V_{D D A}=3.3 \mathrm{~V} \end{gathered}$ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {WUSTOP }}$ | Wakeup from Stop mode | 4.5 | 4.5 | $\mu \mathrm{s}$ |
| ${ }^{\text {twUPOR }}$ | Wakeup from power off mode | 74.4 | 103 |  |
| twusleep | Wakeup from Sleep mode | 6 | - | CPU clock cycles |

### 6.3.6 External clock source characteristics

High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 11.

Table 32. High-speed external user clock characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {HSE_ext }}$ | User external clock source frequency ${ }^{(1)}$ | - | 1 | 8 | 32 | MHz |
| $\mathrm{V}_{\text {HSEH }}$ | OSC_IN input pin high level voltage |  | $0.7 \mathrm{~V}_{\mathrm{DD}}$ | - | $V_{D D}$ | V |
| $\mathrm{V}_{\text {HSEL }}$ | OSC_IN input pin low level voltage |  | $\mathrm{V}_{S S}$ | - | $0.3 \mathrm{~V}_{\mathrm{DD}}$ |  |
| $\begin{aligned} & \left.\mathrm{t}_{\mathrm{w}(\mathrm{HSEH})}\right) \\ & \mathrm{t}_{\mathrm{w}(\mathrm{HSEL})} \end{aligned}$ | OSC_IN high or low time ${ }^{(1)}$ |  | 15 | - | - | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{r}(\mathrm{HSE})} \\ & \left.\mathrm{t}_{\mathrm{f}(\mathrm{HSE}}\right) \end{aligned}$ | OSC_IN rise or fall time ${ }^{(1)}$ |  | - | - | 20 |  |

1. Guaranteed by design, not tested in production.

Figure 11. High-speed external clock source AC timing diagram


## Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 12

Table 33. Low-speed external user clock characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\text {LSE_ext }}$ | User External clock source frequency ${ }^{(1)}$ | - | - | 32.768 | 1000 | kHz |
| $\mathrm{V}_{\text {LSEH }}$ | OSC32_IN input pin high leve voltage |  | $0.7 \mathrm{~V}_{\mathrm{DD}}$ | - | $V_{D D}$ | V |
| V LSEL | OSC32_IN input pin low level voltage |  | $\mathrm{V}_{\mathrm{SS}}$ | - | $0.3 \mathrm{~V}_{\mathrm{DD}}$ |  |
| $\mathrm{t}_{\mathrm{w} \text { (LSEH) }}$ <br> $\mathrm{t}_{\mathrm{w} \text { (LSEL) }}$ | OSC32_IN high or low time ${ }^{(1)}$ |  | 450 | - | - | ns |
| $\begin{aligned} & \left.\mathrm{t}_{\mathrm{r}(\mathrm{LSE})}\right) \\ & \mathrm{t}_{\mathrm{f}(\mathrm{LSE})} \end{aligned}$ | OSC32_IN rise or fall time ${ }^{(1)}$ |  | - | - | 50 |  |

1. Guaranteed by design, not tested in production.

Figure 12. Low-speed external clock source AC timing diagram


## High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 34. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 34. HSE oscillator characteristics

| Symbol | Parameter | Conditions ${ }^{(1)}$ | Min. ${ }^{(2)}$ | Typ. | Max. ${ }^{(2)}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fosc_IN | Oscillator frequency |  | 4 | 8 | 32 | MHz |
| $\mathrm{R}_{\mathrm{F}}$ | Feedback resistor |  | - | 200 | - | k $\Omega$ |
| $I_{\text {DD }}$ | HSE current consumption | During startup ${ }^{(3)}$ | - | - | 8.5 | mA |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{Rm}=30 \Omega \\ \mathrm{CL}=10 \mathrm{pF} @ 8 \mathrm{MHz} \end{gathered}$ | - | 0.4 | - |  |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{Rm}=45 \Omega \\ \mathrm{CL}=10 \mathrm{pF} @ 8 \mathrm{MHz} \end{gathered}$ | - | 0.5 | - |  |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{Rm}=30 \Omega \\ \mathrm{CL}=5 \mathrm{pF} @ 32 \mathrm{MHz} \end{gathered}$ | - | 0.8 | - |  |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{Rm}=30 \Omega \\ \mathrm{CL}=10 \mathrm{pF} @ 32 \mathrm{MHz} \end{gathered}$ | - | 1 | - |  |
|  |  | $\begin{gathered} \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{Rm}=30 \Omega \\ \mathrm{CL}=20 \mathrm{pF} @ 32 \mathrm{MHz} \end{gathered}$ | - | 1.5 | - |  |
| $\mathrm{g}_{\mathrm{m}}$ | Oscillator transconductance | Startup | 10 | - | - | $\mathrm{mA} / \mathrm{V}$ |
| $\mathrm{t}_{\mathrm{SU} \text { (HSE) }}{ }^{(4)}$ | Startup time | $V_{D D}$ is stabilized | - | 2 | - | ms |

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first $2 / 3$ of the $t_{\text {SU(HSE) }}$ startup time.
4. $t_{S U(H S E)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 13). $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$ are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of $C_{L 1}$ and $C_{L 2}$. PCB and MCU pin capacitance must be included ( 10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing $\mathrm{C}_{\mathrm{L} 1}$ and $\mathrm{C}_{\mathrm{L} 2}$.
Note: $\quad$ For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 13. Typical application with an 8 MHz crystal


1. $R_{E X T}$ value depends on the crystal characteristics.

## Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 35. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 35. LSE oscillator characteristics ( $\mathrm{f}_{\text {LSE }}=\mathbf{3 2 . 7 6 8} \mathrm{kHz}$ )

| Symbol | Parameter | Conditions ${ }^{(1)}$ | $\underset{(2)}{\operatorname{Min}} .$ | Typ. | $\underset{2)}{\operatorname{Max} .}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDD | LSE current consumption | LSEDRV[1:0]=00 lower driving capability | - | 0.5 | 0.9 | $\mu \mathrm{A}$ |
|  |  | LSEDRV[1:0]=01 medium low driving capability | - | - | 1 |  |
|  |  | $\begin{gathered} \text { LSEDRV[1:0]=10 } \\ \text { medium high driving } \\ \text { capability } \end{gathered}$ | - | - | 1.3 |  |
|  |  | LSEDRV[1:0]=11 higher driving capability | - | - | 1.6 |  |
| $g_{m}$ | Oscillator transconductance | LSEDRV[1:0]=00 lower driving capability | 5 | - | - | $\mu \mathrm{A} / \mathrm{V}$ |
|  |  | LSEDRV[1:0]=01 medium low driving capability | 8 | - | - |  |
|  |  | LSEDRV[1:0]=10 medium high driving capability | 15 | - | - |  |
|  |  | LSEDRV[1:0]=11 <br> higher driving capability | 25 | - | - |  |
| $\mathrm{t}_{\text {SU(LSE) }}{ }^{(3)}$ | Startup time | $V_{D D}$ is stabilized | - | 2 | - | s |

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".
2. Guaranteed by design, not tested in production.
3. $t_{S U(L S E)}$ is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.

Note: $\quad$ For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 14. Typical application with a 32.768 kHz crystal


Note: $\quad$ An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

### 6.3.7 Internal clock source characteristics

The parameters given in Table 36 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18.

## High-speed internal (HSI) RC oscillator

Table 36. HSI oscillator characteristics ${ }^{(1)}$

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{HSI}}$ | Frequency | - | - | 8 | - | MHz |
| TRIM | HSI user trimming step | - | - | - | $1^{(2)}$ | \% |
| $\mathrm{DuCy}_{(\mathrm{HSI})}$ | Duty cycle | - | $45^{(2)}$ | - | $55^{(2)}$ | \% |
| $\mathrm{ACC}_{\mathrm{HSI}}$ | Accuracy of the HSI oscillator (factory calibrated) | $\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ | $-2.8{ }^{(3)}$ | - | $3.8{ }^{(3)}$ | \% |
|  |  | $\mathrm{T}_{\mathrm{A}}=-10$ to $85^{\circ} \mathrm{C}$ | $-1.9{ }^{(3)}$ | - | $2.3{ }^{(3)}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=0$ to $85^{\circ} \mathrm{C}$ | $-1.9^{(3)}$ |  | $2^{(3)}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ | $-1.3^{(3)}$ | - | $2^{(3)}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=0$ to $55^{\circ} \mathrm{C}$ | $-1^{(3)}$ | - | $2^{(3)}$ |  |
|  |  | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}^{(4)}$ | -1 | - | 1 |  |
| $\mathrm{t}_{\text {su(HSI) }}$ | HSI oscillator startup time | - | $1^{(2)}$ | - | $2^{(2)}$ | $\mu \mathrm{s}$ |
| $\mathrm{I}_{\mathrm{DDA}(\mathrm{HSI})}$ | HSI oscillator power consumption | - | - | 80 | $100^{(2)}$ | $\mu \mathrm{A}$ |

1. $\mathrm{V}_{\mathrm{DDA}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
4. Factory calibrated, parts not soldered

Figure 15. HSI oscillator accuracy characterization results for soldered parts


## Low-speed internal (LSI) RC oscillator

Table 37. LSI oscillator characteristics ${ }^{(1)}$

| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{LSI}}$ | Frequency | 30 | 40 | 50 | kHz |
| $\mathrm{t}_{\mathrm{su}(\mathrm{LSI})}{ }^{(2)}$ | LSI oscillator startup time | - | - | 85 | $\mu \mathrm{~s}$ |
| $\mathrm{I}_{\mathrm{DD}(\mathrm{LSI})}{ }^{(2)}$ | LSI oscillator power consumption | - | 0.75 | 1.2 | $\mu \mathrm{~A}$ |

1. $V_{D D A}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
2. Guaranteed by design, not tested in production.

### 6.3.8 PLL characteristics

The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 18.

Table 38. PLL characteristics

| Symbol | Parameter | Value |  |  | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
|  |  | Min. | Typ. | Max. |  |
| $\mathrm{f}_{\text {PLL_IN }}$ |  | $1^{(2)}$ | - | $24^{(2)}$ | MHz |
|  | PLL input clock duty cycle | $40^{(2)}$ | - | $60^{(2)}$ | $\%$ |
| $\mathrm{f}_{\text {PLL_OUT }}$ | PLL multiplier output clock | $16^{(2)}$ | - | 72 | MHz |
| $\mathrm{t}_{\text {LOCK }}$ | PLL lock time | - | - | $200^{(2)}$ | $\mu \mathrm{s}$ |
| Jitter | Cycle-to-cycle jitter | - | - | $300^{(2)}$ | ps |

1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.

### 6.3.9 Memory characteristics

## Flash memory

The characteristics are given at $\mathrm{T}_{\mathrm{A}}=-40$ to $105^{\circ} \mathrm{C}$ unless otherwise specified.
Table 39. Flash memory characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. ${ }^{(1)}$ | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {prog }}$ | 16-bit programming time | $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ | 40 | 53.5 | 60 | $\mu \mathrm{~s}$ |
| $\mathrm{t}_{\text {ERASE }}$ | Page $(2 \mathrm{~KB})$ erase time | $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ | 20 | - | 40 | ms |
| $\mathrm{t}_{\text {ME }}$ | Mass erase time | $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ | 20 | - | 40 | ms |
| $\mathrm{I}_{\mathrm{DD}}$ | Supply current | Write mode | - | - | 10 | mA |
|  |  | Erase mode | - | - | 12 | mA |

1. Guaranteed by design, not tested in production.

Table 40. Flash memory endurance and data retention

| Symbol | Parameter | Conditions | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. ${ }^{(1)}$ |  |
| $\mathrm{N}_{\text {END }}$ | Endurance | $\begin{aligned} & \text { TA }=-40 \text { to }+85^{\circ} \mathrm{C}(6 \text { suffix versions }) \\ & \text { TA }=-40 \text { to }+105^{\circ} \mathrm{C} \text { (7 suffix versions) } \end{aligned}$ | 10 | kcycles |
| $t_{\text {RET }}$ | Data retention | $1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=85{ }^{\circ} \mathrm{C}$ | 30 | Years |
|  |  | $1 \mathrm{kcycle}^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}$ | 10 |  |
|  |  | 10 kcycles $^{(2)}$ at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ | 20 |  |

1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.

### 6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

## Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to $V_{D D}$ and $\mathrm{V}_{\text {SS }}$ through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.
The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709.

Table 41. EMS characteristics

| Symbol | Parameter | Conditions | Level/ <br> Class |
| :--- | :--- | :--- | :---: |
| $\mathrm{V}_{\text {FESD }}$ | Voltage limits to be applied on any I/O pin to <br> induce a functional disturbance | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{LQFP64}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> $\mathrm{f}_{\mathrm{HCLK}}=72 \mathrm{MHz}$ <br> conforms to IEC 61000-4-2 | 2 B |
| $\mathrm{~V}_{\text {EFTB }}$ | Fast transient voltage burst limits to be <br> applied through 100 pF on $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{SS}}$ <br> pins to induce a functional disturbance | $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \mathrm{LQFP64}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> $\mathrm{f}_{\mathrm{HCLK}}=72 \mathrm{MHz}$ <br> conforms to IEC 61000-4-4 | 4 A |

## Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

## Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)


## Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

## Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Table 42. EMI characteristics

| Symbol | Parameter | Conditions | Monitored frequency band | Max vs. [ $\left.\mathrm{f}_{\text {HSE }} / \mathrm{ff}_{\mathrm{HCLK}}\right]$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 8/72 MHz |  |
| $S_{\text {EMI }}$ | Peak level | $V_{D D}=1.8 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LQFP64 package compliant with IEC 61967-2 | 0.1 to 30 MHz | 7 | $\mathrm{dB} \mu \mathrm{V}$ |
|  |  |  | 30 to 130 MHz | 10 |  |
|  |  |  | 130 MHz to 1GHz | 26 |  |
|  |  |  | SAE EMI Level | 4 | - |

### 6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

## Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts $\times(n+1)$ supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 43. ESD absolute maximum ratings

| Symbol | Ratings | Conditions | Class | Maximum <br> value $^{(1)}$ | Unit |
| :---: | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ESD(HBM }}$ <br> ) | Electrostatic discharge <br> voltage (human body model) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> conforming to JESD22- <br> A114 | 2 | 2000 | V |
| $\mathrm{V}_{\text {ESD(CD }}$ <br> M) | Electrostatic discharge <br> voltage (charge device <br> model) | $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, <br> conforming to JESD22- <br> C 101 | II | 250 |  |

1. Data based on characterization results, not tested in production.

## Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 44. Electrical sensitivities

| Symbol | Parameter | Conditions | Class |
| :---: | :---: | :---: | :---: |
| LU | Static latch-up class | $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$ conforming to JESD78A | II level A |

### 6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below $\mathrm{V}_{\mathrm{SS}}$ or above $\mathrm{V}_{\mathrm{DD}}$ (for standard, 3 V -capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

## Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu \mathrm{~A} /+0 \mu \mathrm{~A}$ range), or other functional failure (for example reset occurrence or oscillator frequency deviation). The test results are given in Table 45: I/O current injection susceptibility.

Table 45. I/O current injection susceptibility

| Symbol | Description | Functional susceptibility |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Negative injection | Positive injection |  |
| $\mathrm{I}_{\mathrm{INJ}}$ | Injected current on BOOT0 | -0 | NA | mA |
|  | Injected current on PB11, other TT, FT, FTf and NPOR pins | -5 | NA |  |
|  | Injected current onPC0, PC1, PC2, PC3 (TTa pins) and PF1 pin (FT pin). | 0 | +5 |  |

Table 45. I/O current injection susceptibility (continued)

| Symbol | Description | Functional susceptibility |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Negative injection | Positive injection |  |
| $\mathrm{I}_{\mathrm{INJ}}$ | Injected current on PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PB0, PB1, PB12, PB13, PB14, PB15 with induced leakage current on other pins from this group less than $-100 \mu \mathrm{~A}$ or more than $+900 \mu \mathrm{~A}$ | -5 | +5 | mA |
|  | Injected current on all other TC, TTa and RESET pins | -5 | +5 |  |

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

### 6.3.13 I/O port characteristics

## General input/output characteristics

Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 18. All I/Os are CMOS and TTL compliant.

Table 46. I/O static characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIL | Low level input voltage | TT, TC and TTa I/O | - | - | $0.3 \mathrm{~V}_{\mathrm{DD}}+0.07{ }^{(1)}$ | V |
|  |  | FT and FTf I/O | - | - | $0.475 \mathrm{~V}_{\mathrm{DD}-0.2}{ }^{(1)}$ |  |
|  |  | BOOT0 | - | - | $0.3 \mathrm{~V}_{\mathrm{DD}}-0.3{ }^{(1)}$ |  |
|  |  | All I/Os except BOOTO | - | - | $0.3 \mathrm{~V}_{\mathrm{DD}}{ }^{(2)}$ |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High level input voltage | TTa and TT I/O | $0.445 \mathrm{~V}_{\mathrm{DD}}+0.398{ }^{(1)}$ | - | - |  |
|  |  | FT and FTf I/O | $0.5 \mathrm{~V}_{\mathrm{DD}+0.2}{ }^{(1)}$ | - | - |  |
|  |  | BOOTO | $0.2 \mathrm{~V}_{\mathrm{DD}}+0.95{ }^{(1)}$ | - | - |  |
|  |  | All I/Os except BOOTO | $0.7 \mathrm{~V}_{\mathrm{DD}}{ }^{(2)}$ | - | - |  |
| $V_{\text {hys }}$ | Schmitt trigger hysteresis | TT, TC and TTa I/O | - | $200{ }^{(1)}$ | - | mV |
|  |  | FT and FTf I/O | - | $100{ }^{(1)}$ | - |  |
|  |  | BOOT0 | - | $300{ }^{(1)}$ | - |  |

Table 46. I/O static characteristics (continued)

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{\mathrm{lkg}}$ | Input leakage current ${ }^{(3)}$ | TC, FT, TT, FTf and TTa I/O in digital mode $V_{S S} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}}$ | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
|  |  | TTa I/O in digital mode $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DDA}}$ | - | - | 1 |  |
|  |  | TTa I/O in analog mode $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DDA }}$ | - | - | 0.2 |  |
|  |  | $\begin{gathered} \text { FT and FTf I/O } \mathrm{O}^{(4)} \\ \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} \end{gathered}$ | - | - | 10 |  |
|  |  | $\begin{gathered} \mathrm{POR} \\ \mathrm{~V}_{\mathrm{DDA}} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} \end{gathered}$ | - | - | 10 |  |
| $\mathrm{R}_{\mathrm{PU}}$ | Weak pull-up equivalent resistor ${ }^{(5)}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ | 25 | 40 | 55 | k $\Omega$ |
| $\mathrm{R}_{\mathrm{PD}}$ | Weak pull-down equivalent resistor ${ }^{(5)}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$ | 25 | 40 | 55 | k $\Omega$ |
| $\mathrm{C}_{10}$ | I/O pin capacitance | - | - | 5 | - | pF |

1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility.
4. To sustain a voltage higher than $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$, the internal pull-up/pull-down resistors must be disabled.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum ( $\sim 10 \%$ order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 16 and Figure 17 for standard I/Os.

Figure 16. TC and TTa I/O input characteristics - CMOS port


Figure 17. TC and TTa I/O input characteristics - TTL port


## Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to $+/-8 \mathrm{~mA}$, and sink or source up to $+/-20 \mathrm{~mA}$ (with a relaxed $\mathrm{V}_{\mathrm{OL}} / \mathrm{V}_{\mathrm{OH}}$ ).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on $V_{D D}$, plus the maximum Run consumption of the MCU sourced on $V_{D D}$, cannot exceed the absolute maximum rating $\Sigma \mathrm{l}_{\text {VDD }}$ (see Table 16).
- $\quad$ The sum of the currents sunk by all the $I / O s$ on $V_{S S}$ plus the maximum Run consumption of the MCU sunk on $\mathrm{V}_{\mathrm{SS}}$ cannot exceed the absolute maximum rating ${ }^{\Sigma} \mathrm{l}_{\text {vss }}$ (see Table 16).


## Output voltage levels

Unless otherwise specified, the parameters given in Table 43: ESD absolute maximum ratings are derived from tests performed under ambient temperature and $V_{D D}$ supply voltage conditions summarized in Table 18. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL compliant.

Table 47. Output voltage characteristics

| Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OL}}{ }^{(1)}$ | Output low level voltage for an I/O pin | $\begin{gathered} \mathrm{I}_{\mathrm{IO}}=+4 \mathrm{~mA} \\ 1.65 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<1.95 \mathrm{~V} \end{gathered}$ | - | 0.4 | V |
| $\mathrm{V}_{\mathrm{OH}}{ }^{(2)}$ | Output high level voltage for an I/O pin | $\begin{gathered} \mathrm{I}_{\mathrm{IO}}=-4 \mathrm{~mA} \\ 1.65 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<1.95 \mathrm{~V} \end{gathered}$ | $\mathrm{V}_{\mathrm{DD}}-0.4$ | - |  |
| $\mathrm{V}_{\text {OLFM }+}{ }^{(1)(3)}$ | Output low level voltage for an FTf I/O pin in FM+ mode | $\begin{gathered} \mathrm{I}_{\mathrm{O}}=+10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{DD}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{gathered}$ | - | 0.4 |  |

1. The $\mathrm{I}_{\mathrm{OO}}$ current sunk by the device must always respect the absolute maximum rating specified in Table 16 and the sum of $I_{I O}$ (l/O ports and control pins) must not exceed $\Sigma l_{\text {IO(PIN) }}$.
2. The $\mathrm{I}_{\mathrm{O}}$ current sourced by the device must always respect the absolute maximum rating specified in Table 16 and the sum of $\mathrm{I}_{\mathrm{IO}}$ (I/O ports and control pins) must not exceed $\Sigma \mathrm{I}_{\mathrm{IO}(\mathrm{PIN})}$.
3. Guaranteed by Design, not tested in production.

## Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 18 and Table 58, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and $\mathrm{V}_{\mathrm{DD}}$ supply voltage conditions summarized in Table 18.

Table 48. I/O AC characteristics ${ }^{(1)}$

| OSPEEDRy <br> [1:0] value ${ }^{(1)}$ | Symbol | Parameter | Conditions | Min | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x0 | $\mathrm{f}_{\text {max (IO)out }}$ | Maximum frequency ${ }^{(2)}$ | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=1.65 \mathrm{~V}$ to 1.95 V | - | 1 | MHz |
|  | $\mathrm{t}_{\text {f(IO)out }}$ | Output high to low level fall time |  | - | $125^{(3)}$ | s |
|  | $\mathrm{t}_{\text {r }}$ (10)out | Output low to high level rise time |  | - | $125^{(2)}$ |  |
| 01 | $\mathrm{f}_{\max (\mathrm{IO}) \text { out }}$ | Maximum frequency ${ }^{(2)}$ |  | - | $4^{(3)}$ | MHz |
|  | $\mathrm{t}_{\mathrm{f}(10) \text { out }}$ | Output high to low level fall time |  | - | $62.5{ }^{(3)}$ | ns |
|  | $\mathrm{t}_{\text {r }}$ (10)out | Output low to high level rise time |  | - | $62.5{ }^{(3)}$ |  |
| 11 | $\mathrm{f}_{\max (10) \text { out }}$ | Maximum frequency ${ }^{(3)}$ |  | - | $10^{(3)}$ | MHz |
|  | $\mathrm{t}_{\text {f(1O)out }}$ | Output high to low level fall time |  | - | $25^{(2)}$ | ns |
|  | $\mathrm{t}_{\text {r }}$ (10)out | Output low to high level rise time |  | - | $25^{(3)}$ |  |
| FM+ configuration ${ }^{(4)}$ | $\mathrm{f}_{\text {max }}$ (IO)out | Maximum frequency ${ }^{(2)}$ |  | - | $\begin{gathered} 0.5^{(4)(3} \end{gathered}$ | MHz |
|  | $\mathrm{t}_{\text {f(IO)out }}$ | Output high to low level fall time |  | - | $16^{(4)(3)}$ | ns |
|  | $\mathrm{t}_{\mathrm{r}}(10)$ out | Output low to high level rise time |  | - | $44^{(4)(3)}$ |  |
| - | ${ }^{\text {textipw }}$ | Pulse width of external signals detected by the EXTI controller | - | 10 | - | ns |

[^1]Figure 18. I/O AC characteristics definition


### 6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, $\mathrm{R}_{\mathrm{PU}}$ (see Table 46).
Unless otherwise specified, the parameters given in Table 49 are derived from tests performed under ambient temperature and $\mathrm{V}_{\mathrm{DD}}$ supply voltage conditions summarized in Table 18.

Table 49. NRST pin characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IL(NRST }}{ }^{(1)}$ | NRST Input low level voltage | - | - | - | $\begin{gathered} \hline 0.3 \mathrm{~V}_{\mathrm{DD}}+{ }^{+} \\ 0.07^{(1)} \end{gathered}$ | V |
| $\mathrm{V}_{\mathrm{IH}(\mathrm{NRST})}{ }^{(1)}$ | NRST Input high level voltage | - | $\begin{gathered} 0.445 \mathrm{~V}_{\mathrm{DD}}+ \\ 0.398^{(1)} \end{gathered}$ | - | - |  |
| $\mathrm{V}_{\text {hys(NRST) }}$ | NRST Schmitt trigger voltage hysteresis | - | - | 200 | - | mV |
| R PU | Weak pull-up equivalent resistor ${ }^{(2)}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ | 25 | 40 | 55 | $\mathrm{k} \Omega$ |
| $\mathrm{V}_{\mathrm{F}(\mathrm{NRST})}{ }^{(1)}$ | NRST Input filtered pulse | - | - | - | $100^{(1)}$ | ns |
| $\mathrm{V}_{\mathrm{NF}(\mathrm{NRST})^{(1)}}$ | NRST Input not filtered pulse | - | $700^{(1)}$ | - | - | ns |

[^2]Figure 19. Recommended NRST pin protection


1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the $\mathrm{V}_{\text {IL(NRST) }}$ max level specified in Table 49. Otherwise the reset will not be taken into account by the device.

### 6.3.15 NPOR pin characteristics

The NPOR pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, Rpu (see Table 53) connected to VDDA supply.Unless otherwise specified, the parameters given in Table 53 are derived from tests performed under ambient temperature and VDDA supply voltage conditions summarized in Table 18.

Table 50. NPOR pin characteristics

| Symbol ${ }^{(1)}$ | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IL}(\mathrm{NPOR})}$ | NPOR Input low level voltage | - | - | - | $0.475 \mathrm{~V}_{\mathrm{DDA}}$ <br> -0.2 |  |
| $\mathrm{~V}_{\mathrm{IH}(\mathrm{NPOR})}$ | NPOR Input high level voltage | - | $0.5 \mathrm{~V}_{\mathrm{DDA}}+0$ <br> .2 | - | - | V |
| $\mathrm{V}_{\text {hys(NPOR) }}$ | NPOR Schmitt trigger voltage hysteresis | - | - | 100 | - | mV |
| $\mathrm{R}_{\mathrm{PU}}$ | Weak pull-up equivalent resistor ${ }^{(2)}$ | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ | 25 | 40 | 55 | $\mathrm{k} \Omega$ |

1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum ( $\sim 10 \%$ order).

### 6.3.16 Timer characteristics

The parameters given in Table 51 are guaranteed by design.
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 51. TIMx ${ }^{(1)(2)}$ characteristics

| Symbol | Parameter | Conditions | Min. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {res(TIM) }}$ | Timer resolution time | - | 1 | - | $\begin{gathered} \mathrm{t}_{\mathrm{TIMxCL}} \\ \mathrm{~K} \end{gathered}$ |
|  |  | $\mathrm{f}_{\text {TIMxCLK }}=72 \mathrm{MHz}$ | 13.9 | - | ns |
|  |  | $\mathrm{f}_{\text {TIM1CLK }}=144 \mathrm{MHz}$ | 6.95 | - | ns |
| $\mathrm{f}_{\mathrm{EXT}}$ | Timer external clock frequency on CH 1 to CH 4 | - | 0 | $\mathrm{f}_{\text {TIMxCLK }} / 2$ | MHz |
|  |  | $\mathrm{f}_{\text {TIMxCLK }}=72 \mathrm{MHz}$ | 0 | 36 | MHz |
| $\mathrm{Res}_{\text {TIM }}$ | Timer resolution | TIMx (except TIM2) | - | 16 | bit |
|  |  | TIM2 | - | 32 |  |
| $\mathrm{t}_{\text {COUNTER }}$ | 16-bit counter clock period | - | 1 | 65536 | $\underset{K}{\mathrm{t}_{\mathrm{TIMx}} \mathrm{CL}}$ |
|  |  | $\mathrm{f}_{\text {TIMxCLK }}=72 \mathrm{MHz}$ | 0.0139 | 910 | $\mu \mathrm{s}$ |
|  |  | $\mathrm{f}_{\text {TIM1CLK }}=144 \mathrm{MHz}$ | 0.0069 | 455 | $\mu \mathrm{s}$ |
| $\underset{\mathrm{T}}{\mathrm{t}_{\text {MAX_COUN }}}$ | Maximum possible count with 32-bit counter | - | - | $65536 \times 65536$ | $\underset{K}{\mathrm{t}_{\text {TIMxCL }}}$ |
|  |  | $\mathrm{f}_{\text {TIMxCLK }}=72 \mathrm{MHz}$ | - | 59.65 | S |
|  |  | $\mathrm{f}_{\text {TIM1CLK }}=144 \mathrm{MHz}$ | - | 29.825 | s |

1. TIM $x$ is used as a general term to refer to the TIM1, TIM2, TIM3,TIM15, TIM16 and TIM17 timers.
2. Guaranteed by design, not tested in production.

Table 52. IWDG min./max. timeout period at 40 kHz (LSI) ${ }^{(1)}$

| Prescaler divider | PR[2:0] bits | Min. timeout (ms) RL[11:0]= <br> $\mathbf{0 x 0 0 0}$ | Max. timeout (ms) RL[11:0]= <br> $\mathbf{0 x F F F}$ |
| :---: | :---: | :---: | :---: |
| $/ 4$ | 0 | 0.1 | 409.6 |
| $/ 8$ | 1 | 0.2 | 819.2 |
| $/ 16$ | 2 | 0.4 | 1638.4 |
| $/ 32$ | 3 | 0.8 | 3276.8 |
| $/ 64$ | 4 | 1.6 | 6553.6 |
| $/ 128$ | 5 | 3.2 | 13107.2 |
| $/ 256$ | 7 | 6.4 | 26214.4 |

1. These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz . Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 53. WWDG min./max. timeout value at $72 \mathrm{MHz}(\text { PCLK })^{(1)}$

| Prescaler | WDGTB | Min. timeout value | Max. timeout value |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 0.05687 | 3.6409 |
| 2 | 1 | 0.1137 | 7.2817 |
| 4 | 2 | 0.2275 | 14.564 |
| 8 | 3 | 0.4551 | 29.127 |

1. Guaranteed by design, not tested in production.

### 6.3.17 Communications interfaces

## $1^{2} \mathrm{C}$ interface characteristics

The I2C interface meets the timings requirements of the $\mathrm{I}^{2} \mathrm{C}$-bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to $1 \mathrm{Mbit} / \mathrm{s}$.

The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual).
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.13: I/O port characteristics for the I2C I/O characteristics.

All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Table 54. I2C analog filter characteristics ${ }^{(1)}$

| Symbol | Parameter | Min. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{AF}}$ | Maximum pulse width of spikes that are <br> suppressed by the analog filter. | $50^{(2)}$ | $260^{(3)}$ | ns |

1. Guaranteed by design, not tested in production.
2. Spikes with width below $\mathrm{t}_{\mathrm{AF}}(\mathrm{min}$.$) are filtered.$
3. Spikes with width above $\mathrm{t}_{\mathrm{AF}}$ (max.) are not filtered.

## SPI characteristics

Unless otherwise specified, the parameters given in Table 49 for SPI are derived from tests performed under ambient temperature, $\mathrm{f}_{\mathrm{PCLKx}}$ frequency and $\mathrm{V}_{\mathrm{DD}}$ supply voltage conditions summarized in Table 18: General operating conditions.

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Table 55. SPI characteristics ${ }^{(1)}$

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}_{\mathrm{SCK}}$ <br> $1 / \mathrm{t}_{\mathrm{C}(\mathrm{SCK})}$ | SPI clock frequency | Master mode | - | - | 18 | MHz |
|  |  | Slave mode |  |  | 12.5 |  |
| Duty(SCK) | Duty cycle of SPI clock frequency | Slave mode | 30 | 50 | 70 | \% |
| $\mathrm{t}_{\text {su(NSS }}$ | NSS setup time | Slave mode, SPI presc = 2 | 4*Tpclk | - | - | ns |
| $\mathrm{t}_{\mathrm{h} \text { (NSS) }}$ | NSS hold time | Slave mode, SPI presc = 2 | 2*Tpclk | - | - |  |
| $\mathrm{t}_{\mathrm{w} \text { (SCKH) }}$ <br> $\mathrm{t}_{\mathrm{w} \text { (SCKL) }}$ | SCK high and low time | Master mode | Tpclk-2 | Tpclk | Tpclk+2 |  |
| $\mathrm{t}_{\text {su(MI) }}$ | Data input setup time | Master mode | 0 | - | - |  |
| $\mathrm{t}_{\text {su(SI) }}$ |  | Slave mode | 3 | - | - |  |
| $\mathrm{t}_{\mathrm{h}}(\mathrm{MI})$ | Data input hold time | Master mode | 5 | - | - |  |
| $\mathrm{t}_{\mathrm{h}(\mathrm{SI})}$ |  | Slave mode | 1 | - | - |  |
| $\mathrm{t}_{\mathrm{a}(\mathrm{SO})}$ | Data output access time | Slave mode | 10 | - | 40 |  |
| $\mathrm{t}_{\text {dis(SO) }}$ | Data output disable time | Slave mode | 10 | - | 17 |  |
| $\mathrm{t}_{\mathrm{v} \text { (SO) }}$ | Data output valid time | Slave mode | - | 22 | 39 |  |
| $\mathrm{t}_{\mathrm{v} \text { (MO) }}$ |  | Master mode | - | 1.5 | 5 |  |
| $\mathrm{t}_{\mathrm{h} \text { (SO) }}$ | Data output hold time | Slave mode | 11 | - | - |  |
| $\mathrm{t}_{\mathrm{h} \text { (MO) }}$ |  | Master mode | 0 | - | - |  |

1. Data based on characterization results, not tested in production.

Figure 20. SPI timing diagram - slave mode and CPHA = 0


Figure 21. SPI timing diagram - slave mode and CPHA = $1^{(1)}$


1. Measurement points are done at $0.5 \mathrm{~V}_{\mathrm{DD}}$ and with external $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.

Figure 22. SPI timing diagram - master mode ${ }^{(1)}$


1. Measurement points are done at $0.5 \mathrm{~V}_{\mathrm{DD}}$ and with external $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
2. Measurement points are done at 0.5 VDD and with external $\mathrm{CL}=30 \mathrm{pF}$.
3. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
4. Measurement points are done at 0.5 VDD and with external $\mathrm{CL}=30 \mathrm{pF}$.
5. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

## CAN (controller area network) interface

Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

### 6.3.18 ADC characteristics

Unless otherwise specified, the parameters given in Table 56 to Table 59 are guaranteed by design, with conditions summarized in Table 18.

Table 56. ADC characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| V DDA | Analog supply voltage for <br> ADC | - | 1.8 | - | 3.6 | V |

Table 56. ADC characteristics (continued)

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $I_{\text {DDA }}$ | ADC current consumption (Figure 23) | Single ended mode, 5 MSPS, | - | 1011.3 | 1172.0 | $\mu \mathrm{A}$ |
|  |  | Single ended mode, 1 MSPS | - | 214.7 | 322.3 |  |
|  |  | Single ended mode, 200 KSPS | - | 54.7 | 81.1 |  |
|  |  | Differential mode,5 MSPS, | - | 1061.5 | 1243.6 |  |
|  |  | Differential mode, 1 MSPS | - | 246.6 | 337.6 |  |
|  |  | Differential mode, 200 KSPS | - | 56.4 | 83.0 |  |
| $\mathrm{f}_{\text {ADC }}$ | ADC clock frequency | - | 0.14 | - | 72 | MHz |
| $\mathrm{f}_{S}{ }^{(1)}$ | Sampling rate | Resolution $=12$ bits, Fast Channel | 0.01 | - | 5.14 | MSPS |
|  |  | Resolution = 10 bits, Fast Channel | 0.012 | - | 6 |  |
|  |  | Resolution = 8 bits, Fast Channel | 0.014 | - | 7.2 |  |
|  |  | Resolution $=6$ bits, Fast Channel | 0.0175 | - | 9 |  |
| $\mathrm{f}_{\text {TRIG }}{ }^{(1)}$ | External trigger frequency | $\mathrm{f}_{\mathrm{ADC}}=72 \mathrm{MHz}$ $\text { Resolution = } 12 \text { bits }$ | - | - | 5.14 | MHz |
|  |  | Resolution $=12$ bits | - | - | 14 | $1 / \mathrm{f}_{\text {ADC }}$ |
| $\mathrm{V}_{\text {AIN }}$ | Conversion voltage range ${ }^{(2)}$ | - | 0 | - | $\mathrm{V}_{\text {DDA }}$ | V |
| $\mathrm{R}_{\text {AIN }}{ }^{(1)}$ | External input impedance | - | - | - | 100 | $\kappa \Omega$ |
| $\mathrm{C}_{\text {ADC }}{ }^{(1)}$ | Internal sample and hold capacitor | - | - | 5 | - | pF |
| $\mathrm{t}_{\mathrm{CAL}}{ }^{(1)}$ | Calibration time | $\mathrm{f}_{\text {ADC }}=72 \mathrm{MHz}$ | 1.56 |  |  | $\mu \mathrm{s}$ |
|  |  | - | 112 |  |  | $1 / f_{\text {ADC }}$ |
| $\mathrm{t}_{\text {atr }}{ }^{(1)}$ | Trigger conversion latency Regular and injected channels without conversion abort | CKMODE $=00$ | 1.5 | 2 | 2.5 | $1 / f_{\text {ADC }}$ |
|  |  | CKMODE $=01$ | - | - | 2 | $1 / f_{\text {ADC }}$ |
|  |  | CKMODE $=10$ | - | - | 2.25 | $1 / f_{\text {ADC }}$ |
|  |  | CKMODE $=11$ | - | - | 2.125 | $1 / f_{\text {ADC }}$ |
| $t_{\text {latrinj }}{ }^{(1)}$ | Trigger conversion latency Injected channels aborting a regular conversion | CKMODE $=00$ | 2.5 | 3 | 3.5 | $1 / f_{\text {ADC }}$ |
|  |  | CKMODE $=01$ | - | - | 3 | $1 / \mathrm{f}_{\text {ADC }}$ |
|  |  | CKMODE $=10$ | - | - | 3.25 | $1 / f_{\text {ADC }}$ |
|  |  | CKMODE $=11$ | - | - | 3.125 | $1 / \mathrm{f}_{\text {ADC }}$ |

Table 56. ADC characteristics (continued)

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{S}}{ }^{(1)}$ | Sampling time | $\mathrm{f}_{\text {ADC }}=72 \mathrm{MHz}$ | 0.021 | - | 8.35 | $\mu \mathrm{~s}$ |
|  |  | - | 1.5 | - | 601.5 | $1 / \mathrm{f}_{\mathrm{ADC}}$ |
| TADCVREG <br> STUP |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{CONV}}{ }^{(1)}$ | ADC Voltage Regulator <br> Start-up time | Total conversion time <br> (including sampling time) | - | - | - | 10 |

1. Data guaranteed by design, not tested in production.
2. $V_{\text {REF+ }}$ can be internally connected to $V_{\text {DDA }}$ and $V_{\text {REF- }}$ can be internally connected to $V_{S S A}$, depending on the package. Refer to Table 12: STM32F328C8 pin definitions for further details.
Figure 23 illustrates the ADC current consumption as per the clock frequency in single-ended and differential modes.

Figure 23. ADC typical current consumption in single-ended and differential modes


Table 57. Maximum ADC $\mathrm{R}_{\text {AIN }}{ }^{(1)}$

| Resolution | Sampling cycle @ 72 MHz | Sampling time [ns] @ 72 MHz | $\mathrm{R}_{\text {AIN }}$ max. (k 2 ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Fast channels ${ }^{(2)}$ | Slow channels | Other channels ${ }^{(3)}$ |
| 12 bits | 1.5 | 20.83 | 0.018 | NA | NA |
|  | 2.5 | 34.72 | 0.150 | NA | 0.022 |
|  | 4.5 | 62.50 | 0.470 | 0.220 | 0.180 |
|  | 7.5 | 104.17 | 0.820 | 0.560 | 0.470 |
|  | 19.5 | 270.83 | 2.70 | 1.80 | 1.50 |
|  | 61.5 | 854.17 | 8.20 | 6.80 | 4.70 |
|  | 181.5 | 2520.83 | 22.0 | 18.0 | 15.0 |
|  | 601.5 | 8354.17 | 82.0 | 68.0 | 47.0 |
| 10 bits | 1.5 | 20.83 | 0.082 | NA | NA |
|  | 2.5 | 34.72 | 0.270 | 0.082 | 0.100 |
|  | 4.5 | 62.50 | 0.560 | 0.390 | 0.330 |
|  | 7.5 | 104.17 | 1.20 | 0.82 | 0.68 |
|  | 19.5 | 270.83 | 3.30 | 2.70 | 2.20 |
|  | 61.5 | 854.17 | 10.0 | 8.2 | 6.8 |
|  | 181.5 | 2520.83 | 33.0 | 27.0 | 22.0 |
|  | 601.5 | 8354.17 | 100.0 | 82.0 | 68.0 |
| 8 bits | 1.5 | 20.83 | 0.150 | NA | 0.039 |
|  | 2.5 | 34.72 | 0.390 | 0.180 | 0.180 |
|  | 4.5 | 62.50 | 0.820 | 0.560 | 0.470 |
|  | 7.5 | 104.17 | 1.50 | 1.20 | 1.00 |
|  | 19.5 | 270.83 | 3.90 | 3.30 | 2.70 |
|  | 61.5 | 854.17 | 12.00 | 12.00 | 8.20 |
|  | 181.5 | 2520.83 | 39.00 | 33.00 | 27.00 |
|  | 601.5 | 8354.17 | 100.00 | 100.00 | 82.00 |
| 6 bits | 1.5 | 20.83 | 0.270 | 0.100 | 0.150 |
|  | 2.5 | 34.72 | 0.560 | 0.390 | 0.330 |
|  | 4.5 | 62.50 | 1.200 | 0.820 | 0.820 |
|  | 7.5 | 104.17 | 2.20 | 1.80 | 1.50 |
|  | 19.5 | 270.83 | 5.60 | 4.70 | 3.90 |
|  | 61.5 | 854.17 | 18.0 | 15.0 | 12.0 |
|  | 181.5 | 2520.83 | 56.0 | 47.0 | 39.0 |
|  | 601.5 | 8354.17 | 100.00 | 100.0 | 100.0 |

1. Data based on characterization results, not tested in production.
2. All fast channels, expect channel on PA6.
3. Channels available on PA6.

Table 58. ADC accuracy - limited test conditions ${ }^{(1)(2)}$

| Symbol | Parameter | Conditions |  |  | Min <br> (3) | Typ | $\underset{(3)}{\operatorname{Max}}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ET | Total unadjusted error | Single ended |  | Fast channel 5.1 Ms | - | $\pm 4$ | $\pm 4.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 5.5$ | $\pm 6$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 3.5$ | $\pm 4$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 3.5$ | $\pm 4$ |  |
| EO | Offset error |  | Single ended | Fast channel 5.1 Ms | - | $\pm 2$ | $\pm 2$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 1.5$ | $\pm 2$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 1.5$ | $\pm 2$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 1.5$ | $\pm 2$ |  |
| EG | Gain error |  |  | Fast channel 5.1 Ms | - | $\pm 3$ | $\pm 4$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 5$ | $\pm 5.5$ |  |
|  |  |  |  | Fast channel 5.1 Ms | - | $\pm 3$ | $\pm 3$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 3$ | $\pm 3.5$ |  |
| ED |  |  | Single ended | Fast channel 5.1 Ms | - | $\pm 1$ | $\pm 1$ |  |
|  |  | Sampling freq. $\leq 5 \mathrm{Msps}$ |  | Slow channel 4.8 Ms | - | $\pm 1$ | $\pm 1$ |  |
|  |  | $V_{D D A}=3.3 \mathrm{~V}$ | Differential | Fast channel 5.1 Ms | - | $\pm 1$ | $\pm 1$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 1$ | $\pm 1$ |  |
| EL | Integral linearity error |  | Single ended | Fast channel 5.1 Ms | - | $\pm 1.5$ | $\pm 2$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 2$ | $\pm 3$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 1.5$ | $\pm 1.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 1.5$ | $\pm 2$ |  |
| $\underset{(4)}{\mathrm{ENOB}}$ | Effective number of bits |  | Single ended | Fast channel 5.1 Ms | 10.8 | 10.8 | - | bit |
|  |  |  |  | Slow channel 4.8 Ms | 10.8 | 10.8 | - |  |
|  |  |  | Differential | Fast channel 5.1 Ms | 11.2 | 11.3 | - |  |
|  |  |  |  | Slow channel 4.8 Ms | 11.2 | 11.3 | - |  |
| SINAD <br> (4) | Signal-tonoise and distortion ratio |  | Single ended | Fast channel 5.1 Ms | 66 | 67 | - | dB |
|  |  |  |  | Slow channel 4.8 Ms | 66 | 67 | - |  |
|  |  |  | Differential | Fast channel 5.1 Ms | 69 | 70 | - |  |
|  |  |  |  | Slow channel 4.8 Ms | 69 | 70 | - |  |

Table 58. ADC accuracy - limited test conditions ${ }^{(1)(2)}$ (continued)

| Symbol | Parameter | Conditions |  |  | $\operatorname{Min}_{(3)}$ | Typ | $\underset{(3)}{\operatorname{Max}}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNR ${ }^{(4)}$ | Signal-tonoise ratio | $\begin{gathered} \text { ADC clock freq. } \leq 72 \mathrm{MHz} \\ \text { Sampling freq } \leq 5 \mathrm{Msps} \\ \mathrm{~V}_{\mathrm{DDA}}=3.3 \mathrm{~V} \\ 25^{\circ} \mathrm{C} \end{gathered}$ | Single ended | Fast channel 5.1 Ms | 66 | 67 | - | dB |
|  |  |  |  | Slow channel 4.8 Ms | 66 | 67 | - |  |
|  |  |  | Differential | Fast channel 5.1 Ms | 69 | 70 | - |  |
|  |  |  |  | Slow channel 4.8 Ms | 69 | 70 | - |  |
| THD ${ }^{(4)}$ | Total harmonic distortion |  | Single ended | Fast channel 5.1 Ms | - | -80 | -80 |  |
|  |  |  |  | Slow channel 4.8 Ms | - | -78 | -77 |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | -83 | -82 |  |
|  |  |  |  | Slow channel 4.8 Ms | - | -81 | -80 |  |

[^3]2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for $\mathrm{I}_{\mathrm{INJ}(\text { PIN })}$ and $\Sigma \mathrm{I}_{\mathrm{INJ}(\text { PIN })}$ in Section 6.3.13 does not affect the ADC accuracy.
3. Data based on characterization results, not tested in production.
4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Table 59. ADC accuracy ${ }^{(1)(2)(3)}$

| Symbol | Parameter | Conditions |  |  | Min ${ }^{(4)}$ | $\underset{(4)}{\operatorname{Max}}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ET | Total unadjusted error | Single ended |  | Fast channel 5.1 Ms | - | $\pm 6.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 6.5$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 4$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 4.5$ |  |
| EO | Offset error |  | Single ended | Fast channel 5.1 Ms | - | $\pm 3$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 3$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 2.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 2.5$ |  |
| EG | Gain error |  |  | Fast channel 5.1 Ms | - | $\pm 6$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 6$ |  |
|  |  |  |  | Fast channel 5.1 Ms | - | $\pm 3.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 4$ |  |
| ED | Differential linearity error |  | Single ended | Fast channel 5.1 Ms | - | $\pm 1.5$ |  |
|  |  | ADC clock freq. $\leq 72 \mathrm{MHz}$, Sampling freq. $\leq 5 \mathrm{Msps}$ |  | Slow channel 4.8 Ms | - | $\pm 1.5$ |  |
|  |  | $1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDA}} \leq 3.6 \mathrm{~V}$ | Differential | Fast channel 5.1 Ms | - | $\pm 1.5$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 1.5$ |  |
| EL | Integral linearity error |  | Single ended | Fast channel 5.1 Ms | - | $\pm 3$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 3.5$ |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | $\pm 2$ |  |
|  |  |  |  | Slow channel 4.8 Ms | - | $\pm 2.5$ |  |
| $\underset{(5)}{\mathrm{ENOB}}$ | Effective number of bits |  | Single ended | Fast channel 5.1 Ms | 10.4 | - | bits |
|  |  |  |  | Slow channel 4.8 Ms | 10.4 | - |  |
|  |  |  | Differential | Fast channel 5.1 Ms | 10.8 | - |  |
|  |  |  |  | Slow channel 4.8 Ms | 10.8 | - |  |
| SINAD <br> (5) | Signal-tonoise and distortion ratio |  | Single ended | Fast channel 5.1 Ms | 64 | - | dB |
|  |  |  |  | Slow channel 4.8 Ms | 63 | - |  |
|  |  |  | Differential | Fast channel 5.1 Ms | 67 | - |  |
|  |  |  |  | Slow channel 4.8 Ms | 67 | - |  |

Table 59. ADC accuracy ${ }^{(1)(2)(3)}$ (continued)

| Symbol | Parameter | Conditions |  |  | Min ${ }^{(4)}$ | $\underset{(4)}{\operatorname{Max}}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SNR ${ }^{(5)}$ | Signal-tonoise ratio | $\begin{gathered} \text { ADC clock freq. } \leq 72 \mathrm{MHz}, \\ \text { Sampling freq } \leq 5 \mathrm{Msps}, \\ 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDA}} \leq 3.6 \mathrm{~V} \end{gathered}$ | Single ended | Fast channel 5.1 Ms | 64 | - | dB |
|  |  |  |  | Slow channel 4.8 Ms | 64 | - |  |
|  |  |  |  | Fast channel 5.1 Ms | 67 | - |  |
|  |  |  | Differential | Slow channel 4.8 Ms | 67 | - |  |
| THD ${ }^{(5)}$ | Total harmonic distortion |  | Single ended | Fast channel 5.1 Ms | - | -75 |  |
|  |  |  |  | Slow channel 4.8 Ms | - | -75 |  |
|  |  |  | Differential | Fast channel 5.1 Ms | - | -79 |  |
|  |  |  |  | Slow channel 4.8 Ms | - | -78 |  |

1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for $I_{I N J(P I N)}$ and $\Sigma l_{\operatorname{INJ}(\text { PIN })}$ in Section 6.3.13 does not affect the ADC accuracy.
3. Better performance may be achieved in restricted $\mathrm{V}_{\mathrm{DDA}}$, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.

Table 60. ADC accuracy ${ }^{(1)(2)}$ at 1 MSPS

| Symbol | Parameter | Test conditions |  | Typ | Max ${ }^{(3)}$ | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ET | Total unadjusted error | ADC Freq $\leq 72 \mathrm{MHz}$ <br> Sampling Freq $\leq 1$ MSPS $2.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DDA}}=\mathrm{V}_{\mathrm{REF}+} \leq 3.6 \mathrm{~V}$ <br> Single-ended mode | Fast channel | $\pm 2.5$ | $\pm 5$ | LSB |
|  |  |  | Slow channel | $\pm 3.5$ | $\pm 5$ |  |
| EO | Offset error |  | Fast channel | $\pm 1$ | $\pm 2.5$ |  |
|  |  |  | Slow channel | $\pm 1.5$ | $\pm 2.5$ |  |
| EG | Gain error |  | Fast channel | $\pm 2$ | $\pm 3$ |  |
|  |  |  | Slow channel | $\pm 3$ | $\pm 4$ |  |
| ED | Differential linearity error |  | Fast channel | $\pm 0.7$ | $\pm 2$ |  |
|  |  |  | Slow channel | $\pm 0.7$ | $\pm 2$ |  |
| EL | Integral linearity error |  | Fast channel | $\pm 1$ | $\pm 3$ |  |
|  |  |  | Slow channel | $\pm 1.2$ | $\pm 3$ |  |

1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.. Any positive injection current within the limits specified for IINJ(PIN) and $\sum I I N J(P I N)$ in Section 6.3.13: I/O port characteristics does not affect the ADC accuracy.
3. Data based on characterization results, not tested in production.

Figure 24. ADC accuracy characteristics


Figure 25. Typical connection diagram using the ADC


1. Refer to Table 56 for the values of $\mathrm{R}_{\text {AIN }}$.
2. $\mathrm{C}_{\text {parasitic }}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF ). A high $\mathrm{C}_{\text {parasitic }}$ value will downgrade conversion accuracy. To remedy this, $\mathrm{f}_{\mathrm{ADC}}$ should be reduced.

## General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 8: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

### 6.3.19 DAC electrical specifications

Table 61. DAC characteristics

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DDA }}$ | Analog supply voltage | DAC output buffer ON | 2.4 | - | 3.6 | V |
| $\mathrm{R}_{\text {LOAD }}{ }^{(1)}$ | Resistive load | DAC output buffer ON | 5 | - | - | $\mathrm{k} \Omega$ |
| $\mathrm{R}_{\mathrm{O}}{ }^{(1)}$ | Output impedance | DAC output buffer OFF | - | - | 15 | k $\Omega$ |
| $\mathrm{C}_{\text {LOAD }}{ }^{(1)}$ | Capacitive load | DAC output buffer ON | - | - | 50 | pF |
| $\mathrm{V}_{\text {DAC, }}^{\text {OUT }}$ ( | Voltage on DAC_OUT output | Corresponds to 12-bit input code ( $0 \times 0 \mathrm{EO}$ ) to ( $0 \times \mathrm{FF} 1 \mathrm{C}$ ) at $\mathrm{V}_{\text {DDA }}=3.6 \mathrm{~V}$ and $(0 \times 155)$ and $(0 \times E A B)$ at $\mathrm{V}_{\text {DDA }}=$ 2.4 V | 0.2 | - | $\mathrm{V}_{\text {DDA }}-0.2$ | V |
|  |  | DAC output buffer OFF | - | 0.5 | - | mV |
|  |  |  | - | - | $\mathrm{V}_{\mathrm{DDA}}-1 \mathrm{LSB}$ | V |
| $\mathrm{I}_{\text {DDA }}{ }^{(3)}$ | DAC DC current consumption in quiescent mode ${ }^{(2)}$ | With no load, middle code (0x800) on the input | - | - | 380 | $\mu \mathrm{A}$ |
|  |  | With no load, worst code (0xF1C) on the input. | - | - | 480 | $\mu \mathrm{A}$ |
| DNL ${ }^{(3)}$ | Differential non linearity Difference between two consecutive code-1LSB) | Given for a 10-bit input code DAC1 channel 1 | - | - | $\pm 0.5$ | LSB |
|  |  | Given for a 12-bit input code DAC1 channel 1 | - | - | $\pm 2$ | LSB |
|  |  | Given for a 10-bit input code DAC1 channel 2 \& DAC2 channel 1 | - | - | -0.75/+0.25 | LSB |
|  |  | Given for a 12-bit input code DAC1 channel 2 \& DAC2 channel 1 | - | - | -3/+1 | LSB |
| $\mathrm{INL}^{(3)}$ | Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095) | Given for a 10-bit input code | - | - | $\pm 1$ | LSB |
|  |  | Given for a 12-bit input code | - | - | $\pm 4$ | LSB |
| Offset ${ }^{(3)}$ | Offset error <br> (difference between measured value at Code ( $0 \times 800$ ) and the ideal value $=V_{D D A} / 2$ ) | - | - | - | $\pm 10$ | mV |
|  |  | Given for a 10-bit input code at $\mathrm{V}_{\mathrm{DDA}}=3.6 \mathrm{~V}$ | - | - | $\pm 3$ | LSB |
|  |  | Given for a 12-bit input code | - | - | $\pm 12$ | LSB |
| Gain $\text { error }{ }^{(3)}$ | Gain error | Given for a 12-bit input code | - | - | $\pm 0.5$ | \% |

Table 61. DAC characteristics (continued)

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {SETTHING }}{ }^{(3}$ | Settling time (full scale: for a 12-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value $\pm 1$ LSB | $\mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega$ | - | 3 | 4 | $\mu \mathrm{s}$ |
| Update rate ${ }^{(3)}$ | Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) | $\mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega$ | - | - | 1 | $\begin{gathered} \mathrm{MS} / \\ \mathrm{s} \end{gathered}$ |
| $\mathrm{t}_{\text {WAKEUP }}{ }^{(3)}$ | Wakeup time from off state (Setting the ENx bit in the DAC Control register) | $\mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pF}, \mathrm{R}_{\text {LOAD }} \geq 5 \mathrm{k} \Omega$ | - | 6.5 | 10 | $\mu \mathrm{s}$ |
| PSRR+ ${ }^{(1)}$ | Power supply rejection ratio (to $V_{\text {DDA }}$ ) (static DC measurement | No R LOAD,$C_{\text {LOAD }}=50 \mathrm{pF}$ | - | -67 | -40 | dB |

1. Guaranteed by design, not tested in production.
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is involved.
3. Data based on characterization results, not tested in production.

Figure 26. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC


1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

### 6.3.20 Comparator characteristics

Table 62. Comparator characteristics ${ }^{(1)}$

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {DDA }}$ | Analog supply voltage | $\mathrm{V}_{\text {REFINT }}$ Scaler not in use | 1.8 | - | 3.6 | V |
|  |  | $\mathrm{V}_{\text {REFINT }}$ Scaler in use | 2 | - | 3.6 |  |
| $\mathrm{V}_{\mathrm{IN}}$ | Comparator input voltage range | - | 0 | - | $\mathrm{V}_{\text {DDA }}$ |  |
| $V_{B G}$ | Scaler input voltage | - | - | $\mathrm{V}_{\text {REFINIT }}$ | - |  |
| $V_{\text {SC }}$ | Scaler offset voltage | - | - | $\pm 5$ | $\pm 10$ | mV |
| $t_{\text {S_SC }}$ | $\mathrm{V}_{\text {REFINT }}$ scaler startup time from power down | First $\mathrm{V}_{\text {REFINT }}$ scaler activation after device power on | - | - | $1^{(2)}$ | s |
|  |  | Next activations | - | - | 0.2 | ms |
| $\mathrm{t}_{\text {START }}$ | Comparator startup time | $V_{\text {DDA }} \geq 2.7 \mathrm{~V}$ | - | - | 4 | $\mu \mathrm{s}$ |
|  |  | $\mathrm{V}_{\text {DDA }}<2.7 \mathrm{~V}$ | - | - | 10 |  |
| $t_{D}$ | Propagation delay for 200 mV step with 100 mV overdrive | $\mathrm{V}_{\text {DDA }} \geq 2.7 \mathrm{~V}$ | - | 25 | 28 | ns |
|  |  | $\mathrm{V}_{\text {DDA }}<2.7 \mathrm{~V}$ | - | 28 | 30 |  |
|  | Propagation delay for full range step with 100 mV overdrive | $\mathrm{V}_{\text {DDA }} \geq 2.7 \mathrm{~V}$ | - | 32 | 35 |  |
|  |  | $\mathrm{V}_{\text {DDA }}<2.7 \mathrm{~V}$ | - | 35 | 40 |  |
| $\mathrm{V}_{\text {OFFSET }}$ | Comparator offset error | $\mathrm{V}_{\mathrm{DDA}} \geq 2.7 \mathrm{~V}$ | - | $\pm 5$ | $\pm 10$ | mV |
|  |  | $\mathrm{V}_{\text {DDA }}<2.7 \mathrm{~V}$ | - | - | $\pm 25$ |  |
| TV ${ }_{\text {OFFSET }}$ | Total offset variation | Full temperature range | - | - | 3 | mV |
| $\mathrm{I}_{\mathrm{DD} \text { (COMP) }}$ | COMP current consumption | - | - | 400 | 600 | $\mu \mathrm{A}$ |

1. Guaranteed by design, not tested in production.
2. For more details and conditions see Figure 27: Maximum VREFINT scaler startup time from power down.

Figure 27. Maximum $\mathbf{V}_{\text {REFINT }}$ scaler startup time from power down


### 6.3.21 Operational amplifier characteristics

Table 63. Operational amplifier characteristics ${ }^{(1)}$

| Symbol | Parameter |  | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {DDA }}$ | Analog supply voltage |  | - | 2.4 | - | 3.6 | V |
| CMIR | Common mode input range |  | - | 0 | - | $\mathrm{V}_{\text {DDA }}$ | V |
| $\mathrm{VI}_{\text {OFFSET }}$ | Input offset voltage | Maximum calibration range | $25^{\circ} \mathrm{C}$, No Load on output. | - | - | 4 | mV |
|  |  |  | All voltage/Temp. | - | - | 6 |  |
|  |  | After offset calibration | $25^{\circ} \mathrm{C}$, No Load on output. | - | - | 1.6 |  |
|  |  |  | All voltage/Temp. | - | - | 3 |  |
| $\Delta \mathrm{V} \mathrm{I}_{\text {OFFSET }}$ | Input offset voltage drift |  | - | - | 5 | - | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| load | Drive current |  | - | - | - | 500 | $\mu \mathrm{A}$ |
| IDDOPAMP | Consumption |  | No load, quiescent mode | - | 690 | 1450 | $\mu \mathrm{A}$ |
| CMRR | Common mode rejection ratio |  | - | - | 90 | - | dB |
| PSRR | Power supply rejection ratio |  | DC | 73 | 117 | - | dB |
| GBW | Bandwidth |  | - | - | 8.2 | - | MHz |
| SR | Slew rate |  | - | - | 4.7 | - | V/us |
| $\mathrm{R}_{\text {LOAD }}$ | Resistive load |  | - | 4 | - | - | $\mathrm{k} \Omega$ |
| $\mathrm{C}_{\text {LOAD }}$ | Capacitive load |  | - | - | - | 50 | pF |
| $\mathrm{VOH}_{\text {SAT }}$ | High saturation voltage |  | $\begin{aligned} & \mathrm{R}_{\text {load }}=\min , \\ & \text { Input at } \mathrm{V}_{\text {DDA }} . \end{aligned}$ | - | - | 100 | mV |
|  |  |  | $\begin{aligned} & \mathrm{R}_{\text {load }}=20 \mathrm{~K}, \\ & \text { Input at } \mathrm{V}_{\mathrm{DDA}} . \end{aligned}$ | - | - | 20 |  |
| VOL ${ }_{\text {SAT }}$ | Low saturation voltage |  | $\begin{aligned} & \mathrm{R}_{\text {load }}=\min , \\ & \text { input at } 0 \mathrm{~V} \end{aligned}$ | - | - | 100 |  |
|  |  |  | $\begin{aligned} & \mathrm{R}_{\text {load }}=20 \mathrm{~K}, \\ & \text { input at } 0 \mathrm{~V} . \end{aligned}$ | - | - | 20 |  |
| $\varphi m$ | Phase margin |  | - | - | 62 | - | - |
| tofftrim | Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy |  | - | - | - | 2 | ms |
| ${ }^{\text {t WAKEUP }}$ | Wake up time from OFF state. |  | $\mathrm{C}_{\text {LOAD }} \leq 50 \mathrm{pf}$, $\mathrm{R}_{\text {LOAD }} \geq 4 \mathrm{k} \Omega$ Follower configuration | - | 2.8 | 5 | $\mu \mathrm{s}$ |
| ts_OPAM_VOUT | ADC sampling time when reading the OPAMP output |  |  | 400 | - | - | ns |

Table 63. Operational amplifier characteristics ${ }^{(1)}$ (continued)

| Symbol | Parameter | Condition | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PGA gain | Non inverting gain value | - | - | 2 | - | - |
|  |  |  | - | 4 | - | - |
|  |  |  | - | 8 | - | - |
|  |  |  | - | 16 | - | - |
| $\mathrm{R}_{\text {network }}$ | R2/R1 internal resistance values in PGA mode ${ }^{(2)}$ | Gain=2 | - | 5.4/5.4 | - | $\mathrm{k} \Omega$ |
|  |  | Gain=4 | - | 16.2/5.4 | - |  |
|  |  | Gain=8 | - | 37.8/5.4 | - |  |
|  |  | Gain=16 | - | 40.5/2.7 | - |  |
| PGA gain error | PGA gain error | - | -1\% | - | 1\% |  |
| $\mathrm{I}_{\text {bias }}$ | OPAMP input bias current | - | - | - | $\pm 0.2^{(3)}$ | $\mu \mathrm{A}$ |
| PGA BW | PGA bandwidth for different non inverting gain | $\begin{aligned} & \text { PGA Gain }=2, \\ & \mathrm{C}_{\text {load }}=50 \mathrm{pF}, \\ & \mathrm{R}_{\text {load }}=4 \mathrm{~K} \Omega \end{aligned}$ | - | 4 | - | MHz |
|  |  | $\begin{aligned} & \hline \text { PGA Gain }=4, \\ & \mathrm{C}_{\text {load }}=50 \mathrm{pF}, \\ & \mathrm{R}_{\text {load }}=4 \mathrm{~K} \Omega \end{aligned}$ | - | 2 | - |  |
|  |  | $\begin{aligned} & \text { PGA Gain }=8, \\ & C_{\text {load }}=50 \mathrm{pF}, \\ & \mathrm{R}_{\text {load }}=4 \mathrm{~K} \Omega \end{aligned}$ | - | 1 | - |  |
|  |  | $\begin{aligned} & \text { PGA Gain }=16, \\ & \mathrm{C}_{\text {load }}=50 \mathrm{pF}, \\ & \mathrm{R}_{\text {load }}=4 \mathrm{~K} \Omega \end{aligned}$ | - | 0.5 | - |  |
| en | Voltage noise density | @ 1KHz, Output loaded with $4 \mathrm{~K} \Omega$ | - | 109 | - |  |
|  |  | @ 10KHz, Output loaded with $4 \mathrm{~K} \Omega$ | - | 43 | - | $\frac{n V}{\sqrt{H z}}$ |

1. Guaranteed by design, not tested in production.
2. R 2 is the internal resistance between OPAMP output and OPAMP inverting input.

R1 is the internal resistance between OPAMP inverting input and ground.
The PGA gain $=1+R 2 / R 1$
3. Mostly TTa I/O leakage, when used in analog mode.

Figure 28. OPAMP Voltage Noise versus Frequency


### 6.3.22 Temperature sensor (TS) characteristics

Table 64. Temperature sensor (TS) characteristics

| Symbol | Parameter | Min. | Typ. | Max. | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{L}}{ }^{(1)}$ | $\mathrm{V}_{\text {SENSE }}$ linearity with temperature | - | $\pm 1$ | $\pm 2$ | ${ }^{\circ} \mathrm{C}$ |
| Avg_Slope $^{(1)}$ | Average slope | 4.0 | 4.3 | 4.6 | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{25}$ | Voltage at $25^{\circ} \mathrm{C}$ | 1.34 | 1.43 | 1.52 | V |
| $\mathrm{t}_{\text {START }}{ }^{(1)}$ | Startup time | 4 | - | 10 | $\mu \mathrm{~s}$ |
| $\mathrm{~T}_{\text {S_temp }}{ }^{(1)(2)}$ | ADC sampling time when reading the <br> temperature | 2.2 | - | - | $\mu \mathrm{s}$ |

1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.

Table 65. Temperature sensor (TS) calibration values

| Calibration value name | Description | Memory address |
| :--- | :--- | :--- |
| TS_CAL1 | TS ADC raw data acquired at <br> temperature of $30^{\circ} \mathrm{C}$, <br> $\mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$ | $0 \times 1$ FFF F7B8-0x1FFF F7B9 |
| TS_CAL2 | TS ADC raw data acquired at <br> temperature of $110^{\circ} \mathrm{C}$ <br> $\mathrm{V}_{\text {DDA }}=3.3 \mathrm{~V}$ | $0 \times 1$ FFF F7C2-0x1FFF F7C3 |

## $7 \quad$ Package characteristics

### 7.1 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com. ECOPACK ${ }^{\circledR}$ is an ST trademark.

Figure 29. LQFP48-7x7mm, 48-pin low-profile quad flat package outline


1. Drawing is not to scale.

Table 66. LQFP48-7x7mm, 48-pin low-profile quad flat package mechanical data

| Symbol | millimeters |  |  | inches $^{(1)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Typ | Max | Min | Typ | Max |
| A | - | - | 1.600 | - | - | 0.0630 |
| A1 | 0.050 | - | 0.150 | 0.0020 | - | 0.0059 |
| A2 | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551 | 0.0571 |
| b | 0.170 | 0.220 | 0.270 | 0.0067 | 0.0087 | 0.0106 |
| c | 0.090 | - | 0.200 | 0.0035 | - | 0.0079 |
| D | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 |
| D1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 |
| D3 | - | 5.500 | - | - | 0.2165 | - |
| E | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543 | 0.3622 |
| E1 | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756 | 0.2835 |
| E3 | - | 5.500 | - | - | 0.2165 | - |

Table 66. LQFP48-7x7mm, 48-pin low-profile quad flat package mechanical data (continued)

| Symbol | millimeters |  |  | inches $^{(1)}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Min | Typ | Max | Min | Typ | Max |
| e | - | 0.500 | - | - | 0.0197 | - |
| L | 0.450 | 0.600 | 0.750 | 0.0177 | 0.0236 | 0.0295 |
| L 1 | - | 1.000 | - |  | 0.0394 | - |
| k | $0^{\circ}$ | $3.5^{\circ}$ | $7^{\circ}$ | $0^{\circ}$ | $3.5^{\circ}$ | $7^{\circ}$ |
| ccc | - | - | 0.080 | - | - | 0.0031 |

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 30. LQFP48 recommended footprint


1. Drawing is not to scale.
2. Dimensions are in millimeters.

## Marking of engineering samples

Figure 31. LQFP48 marking example (package top view)


1. Parts marked as "ES","E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

### 7.2 Thermal characteristics

The maximum chip-junction temperature, $T_{J}$ max, in degrees Celsius, may be calculated using the following equation:
$\mathrm{T}_{\mathrm{J}} \max =\mathrm{T}_{\mathrm{A}} \max +\left(\mathrm{P}_{\mathrm{D}} \max x \Theta_{\mathrm{JA}}\right)$
Where:

- $\quad \mathrm{T}_{\mathrm{A}}$ max is the maximum ambient temperature in ${ }^{\circ} \mathrm{C}$,
- $\quad \Theta_{\mathrm{JA}}$ is the package junction-to-ambient thermal resistance, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$,
- $\quad P_{D} \max$ is the sum of $P_{I N T} \max$ and $P_{I / O} \max \left(P_{D} \max =P_{I N T} \max +P_{I / O} \max \right)$,
- $\quad P_{\text {INT }}$ max is the product of $I_{D D}$ and $V_{D D}$, expressed in Watts. This is the maximum chip internal power.
$\mathrm{P}_{\text {I/O }}$ max represents the maximum power dissipation on output pins where:

$$
\mathrm{P}_{\mathrm{I} / \mathrm{O}} \max =\Sigma\left(\mathrm{V}_{\mathrm{OL}} \times \mathrm{l}_{\mathrm{OL}}\right)+\Sigma\left(\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{OH}}\right) \times \mathrm{l}_{\mathrm{OH}}\right),
$$

taking into account the actual $\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OH}}$ of the I/Os at low and high level in the application.

Table 67. Package thermal characteristics

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: |
| $\Theta_{\mathrm{JA}}$ | Thermal resistance junction-ambient <br> LQFP48 $-7 \times 7 \mathrm{~mm} / 0.5 \mathrm{~mm}$ pitch | $55^{\circ} \mathrm{C} / \mathrm{W}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

### 7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

### 7.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 68: Ordering information scheme.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F328C8 at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

## Example: high-performance application

Assuming the following application conditions:
Maximum ambient temperature $\mathrm{T}_{\text {Amax }}=82^{\circ} \mathrm{C}$ (measured according to JESD51-2), $\mathrm{I}_{\mathrm{DD} \max }=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V}$, maximum $20 \mathrm{I} / \mathrm{Os}$ used at the same time in output at low level with $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and maximum $2 \mathrm{l} / \mathrm{Os}$ used at the same time in output mode at low level with $\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OL}}=1.3 \mathrm{~V}$
$\mathrm{P}_{\text {INTmax }}=50 \mathrm{~mA} \times 3.5 \mathrm{~V}=175 \mathrm{~mW}$
$\mathrm{P}_{\text {IOmax }}=20 \times 8 \mathrm{~mA} \times 0.4 \mathrm{~V}+2 \times 20 \mathrm{~mA} \times 1.3 \mathrm{~V}=61.6 \mathrm{~mW}$
This gives: $\mathrm{P}_{\text {INTmax }}=175 \mathrm{~mW}$ and $\mathrm{P}_{\mathrm{IO} \max }=61.6 \mathrm{~mW}$

$$
P_{\text {Dmax }}=175+61.6=236.6 \mathrm{~mW}
$$

Thus: $P_{\text {Dmax }}=236.6 \mathrm{~mW}$
Using the values obtained in Table $67 \mathrm{~T}_{\mathrm{Jmax}}$ is calculated as follows:

$$
\begin{aligned}
& -\quad \text { For LQFP48, } 55^{\circ} \mathrm{C} / \mathrm{W} \\
& \mathrm{~T}_{\text {Jmax }}=82^{\circ} \mathrm{C}+\left(55^{\circ} \mathrm{C} / \mathrm{W} \times 236.6 \mathrm{~mW}\right)=82^{\circ} \mathrm{C}+13.01^{\circ} \mathrm{C}=95.01^{\circ} \mathrm{C}
\end{aligned}
$$

This is within the range of the suffix 6 version parts $\left(-40<T_{J}<105^{\circ} \mathrm{C}\right)$.
In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 68: Ordering information scheme).

## 8 Part numbering

Table 68. Ordering information scheme
Example:

Device family
STM32 $=$ ARM $^{\circledR}$-based 32-bit microcontroller
Product type
$\mathrm{F}=$ general-purpose
Device subfamily
328 = STM32F328xx
Pin count
$C=48$
Flash memory size
$8=64$ Kbytes of Flash memory
Package
T = LQFP
Temperature range
$6=$ Industrial temperature range, -40 to $85^{\circ} \mathrm{C}$
7 = Industrial temperature range, -40 to $105^{\circ} \mathrm{C}$
Options
xxx = programmed parts
TR = tape and reel

## $9 \quad$ Revision history

Table 69. Document revision history

| Date | Revision | Changes |
| :---: | :---: | :--- |
| 28-May-2014 | 1 | Initial release |
| 08-Dec-2014 | 2 | Updated: <br> Table 12: STM32F328C8 pin definitions <br> Table 51: TIMx characteristics <br> Table 36: HSI oscillator characteristics <br> Table 30: Peripheral current consumption <br> Table 43: ESD absolute maximum ratings <br> Table 44: Electrical sensitivities <br> Table 45: I/O current injection susceptibility |
| 30-Jan-2014 | 3 | Updated: <br> Figure 1: STM32F328C8 block diagram <br> Table 34: HSE oscillator characteristics <br> Table 39: Flash memory characteristics <br> Added Figure 11: High-speed external clock source AC timing <br> diagram |

## IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

$$
\text { © } 2015 \text { STMicroelectronics - All rights reserved }
$$


[^0]:    1. Data based on characterization results and tested in production.
[^1]:    1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0364 reference manual for a description of GPIO Port configuration register.
    2. The maximum frequency is defined in Figure 18.
    3. Guaranteed by design, not tested in production.
    4. The I/O speed configuration is bypassed in FM+I/O mode. Refer to the STM32F30x and STM32F301xx reference manual RM0364 for a description of FM $+1 / \mathrm{O}$ mode configuration.
[^2]:    1. Guaranteed by design, not tested in production.
    2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum ( $\sim 10 \%$ order).
[^3]:    1. $A D C D C$ accuracy values are measured after internal calibration.
